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Executive Summary
The goal of this report is to provide a relatively complete record of the work done by the Center for Radiative

Shock Hydrodynamics (CRASH) during its five-plus years of existence. Our intent is as follows. First, to make

available a complete set of experimental data, which may prove useful for future predictive science studies. Second,

to record enough detail of the CRASH code that the code itself or some of its methods may prove useful to future

simulators. Third, to present our predictive studies, which included several methodological developments within the

general context of Kennedy-O’Hagan-type models and also included facing quite a few challenges in developing the

computer runs and metrics for use in such an analysis. We believe that this too may be useful to future researchers.

The specific focus of the project was radiative shocks, which develop when shock waves become so fast and hot

that the radiation from the shocked matter dominates the energy transport. This in turn leads to changes in the shock

structure. Radiative shocks are challenging to simulate, as they include phenomena on a range of spatial and temporal

scales and involve two types of nonlinear physics - hydrodynamics and radiation transport. Even so, the range of

physics involved is narrow enough that one can hope to model all of it with sufficient fidelity to reproduce the data.

CRASH was focused on developing predictions for a sequence of experiments performed in Project Year 5, in

which those experiments represented an extrapolation from all previously available data. The previous data involved

driving radiative shocks within cylindrical structures, and mainly straight tubes. The Year 5 experiments drove a

radiative shock down an elliptical tube. Our long-stated goal for these predictions was that the distribution of predicted

values would overlap significantly with the observed distribution. We achieved this goal.

Achieving our goal required the conversion of an established space-weather code to model radiative shocks at

high energy density. To obtain reasonable fidelity with respect to the experimental data required implementing a

laser absorption package, in addition to a hydrodynamic solver, electron physics and heat conduction, and multigroup

diffusive radiation transport. The dedicated experiments provided evidence of experimental variability, validation of

the calculation of initial shock wave behavior, and validation data at many observation times using cylindrical shock

tubes. Following this were preparatory experiments for and finally the execution of the Year 5 experiments. The

predictive science research included a wide range of sensitivity studies to determine which variables were important

and a sequence of predictive studies focused on specific issues and sets of data. This led ultimately to predictions of

shock location for the Year 5 experiments.

A conclusion from this project is that the serious quantification of uncertainty in simulations is a dauntingly difficult

and expensive prospect. Pre-existing codes are unlikely to have been built with attention to what will be needed to

quantify their uncertainty. Pre-existing experimental results are even more unlikely to include a sufficiently detailed

analysis of the experimental uncertainties. And this will also be true of most experiments that might be used to validate

components of the simulation. The analysis of uncertainty in any one of the physical processes (and related physical

constants) is a major effort. And addressing model form uncertainty is an even bigger challenge, that may in principle

require development of complete, alternative simulation models. We made a start at all of this, and completed almost

none of it. But by the end of a project, we finally had all the pieces in place and working that would have enabled a

range of important studies and advances in relatively near-term years. But the sponsor terminated the program after

only five years. For most of the participants this was a relatively minor development, although for a few of them it

proved to be enormously disruptive. We believe that the cost to the nation, in work that was ready be done but now

will not be, was much much larger.

2



Contents

1 Introductory Overview 7
1.1 The path of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The CRASH Experiments and Data 13
2.1 Initial CRASH experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Uncertainties in the CRASH experimental sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Shock Breakout Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Early-time radiative shock experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Preparations for tubes with elliptical profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 The Year 5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 The CRASH code 37
3.1 Equations of radiation hydrodynamics in dense plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Radiation Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Level Sets and Material Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Equation of State and Opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.5 Flux-limited Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Hydro Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1.1 Conservative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1.2 Non-Conservative Pressure Equations . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Frequency Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Implicit Diffusion and Energy Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3.1 Coupled Implicit Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3.2 Decoupled Implicit Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.5 R-Z-Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.6 Discretization of the diffusion operator at resolution changes . . . . . . . . . . . . . . . . . . 53

3.2.6.1 Improved diffusion operator at resolution changes . . . . . . . . . . . . . . . . . . 54

3.3 Parallel Performance of the Baseline CRASH code . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Simulating radiative shocks in nozzle shock tubes using the baseline CRASH code . . . . . . . . . . 57

3.4.1 Circular nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Elliptical nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Improved geometrical transformation for the elliptical nozzle . . . . . . . . . . . . . . . . . . 66

3.5 Improving on the baseline CRASH code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 CRASH initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1.1 Initializing CRASH with the laser package . . . . . . . . . . . . . . . . . . . . . . 67

3



3.5.1.2 Laser Package Extension to 3D rays with Verification . . . . . . . . . . . . . . . . 70

3.5.2 Reading 2D CRASH output as an initialization for 3D CRASH runs . . . . . . . . . . . . . . 72

3.5.3 Initializing CRASH with Hyades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.3.1 Limitations of Hyades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.4 Boundary conditions for radiation diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.5 Improvements to the Modeling of Equations of State in Dense Plasmas . . . . . . . . . . . . 76

3.5.5.1 Effect of the Fermi statistics on Thermal Ionization . . . . . . . . . . . . . . . . . 77

3.5.5.2 Madelung approximation of electrostatic energy . . . . . . . . . . . . . . . . . . . 82

3.5.5.3 Excited states of atoms and ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.6 Modeling of Radiation Transport and Opacities in Dense Plasmas . . . . . . . . . . . . . . . 85

3.5.6.1 Multi-group diffusion: governing equations and general ralationships . . . . . . . . 85

3.5.6.2 Absorption, emission and stimulated emission . . . . . . . . . . . . . . . . . . . . 87

3.5.6.3 Contributions to Opacity: Photoionization and Photorecombination, Effect of the

Fermi Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.6.4 Contributions to Opacity: Free-Free Transitions . . . . . . . . . . . . . . . . . . . 92

3.5.6.5 The main Contribution to the Opacity: Bound-Bound Transitions. . . . . . . . . . . 92

3.5.7 Numerical setup of the shock tube experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.8 Radiative shocks in straight tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.8.1 Switching the AMR code in BATSRUS/CRASH completely to BATL . . . . . . . . 100

4 Code Quality Assurance 101
4.1 Code Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Error Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.2 Radiation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.2.1 Su-Olson Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.2.2 Lowrie’s Non-equilibrium Radiation Hydrodynamics Solutions . . . . . . . . . . . 103

4.1.2.3 Double Light Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.2.4 Relaxation of Radiation Energy Test . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1.3 Heat Conduction Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.3.1 Uniform Heat Conduction in rz-geometry . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.3.2 Reinicke Meyer-ter Vehn Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.3.3 Heat Conduction Version of Lowrie’s Test . . . . . . . . . . . . . . . . . . . . . . 110

4.1.4 Full System Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Richtmyer Meshkov validation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Solution Verification for the CRASH Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Shock Tube with Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.2 One-dimensional CRASH Problem with Hyades Initialization . . . . . . . . . . . . . . . . . 126

4.3.3 One-dimensional CRASH Problem with Laser Package Initialization . . . . . . . . . . . . . 130

4



4.3.4 Single Material Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.5 Mixed Cell Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3.6 Two-dimensional CRASH Problem with Laser Package Initialization . . . . . . . . . . . . . 134

4.3.7 Summary of Solution Verification Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 Code-to-code Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.1 Description of Simulation Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.2.1 Reverse Radiative Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.2.2 Temperature Relaxation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4.2.3 Diffusion Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4.2.4 Hydrodynamics Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5 Evaluation of Model Form Uncertainties 148
5.1 Transport–diffusion comparison using PDT and CRASH . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1.1 Testbed for the comparison study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1.2 Code-comparison problems and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1.2.1 Diffusion front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1.2.2 Marshak wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1.2.3 1D CRASH-based problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.1.3 CRASH-code issues uncovered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1.3.1 Heterogeneous Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1.3.2 Boundary conditions for radiation diffusion . . . . . . . . . . . . . . . . . . . . . . 161

5.1.4 Conclusions of the CRASH/PDT Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2 Assessment of Non-LTE effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Predictive Studies 167
6.1 Sets of Code Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.1 Early Run Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.2 Run Set 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.2 Extraction of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2.1 Integrated Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.2 Improved Wall Shock Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 1D HYADES sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.4 Development of a Physics Informed Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.4.1 Description of the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.4.2 Physics-Informed Partitioning of Hyades Output . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.4.3.1 Multivariate adaptive regression splines (MARS) . . . . . . . . . . . . . . . . . . . 190

6.4.3.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5



6.4.3.3 Comparison of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4.5 Hyades Outputs Emulation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.4.5.1 Analysis of GPR results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.4.5.2 Analysis of BMARS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.5 Predictive study from the 1D simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.5.1 The physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.5.2 The simulation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.5.2.1 Preprocessor construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.5.2.2 System inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.5.3 Predictive model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.5.3.1 Input design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.5.3.2 Sensitivity and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.5.3.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.5.4 Conclusions of the 1D predictive study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.6 Sensitivity analysis from early 3D simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.7 Verification of uncertainty quantification software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.8 2D Predictive Study for Shock Location at 20 and 26 ns . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.9 Combining Different Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.10 Prediction of fifth year shock location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.10.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.10.3 Prediction Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.10.3.1 Prediction of shock location in the training experiments . . . . . . . . . . . . . . . 229

6.10.3.2 Prediction of shock location in the fifth year experiments . . . . . . . . . . . . . . 230

6



1 Introductory Overview

Physics modeling, realized in complex computer codes, is often used to forecast what would be observed in reality

should a physical experiment be conducted. However, such forecasts should include a quantitative understanding of

the significant sources of uncertainty affecting the output, including both modeling uncertainty and uncertainty due to

parameters in the model. This uncertainty can be understood through quantitative estimates of the sensitivity of the

output to variations in the input, and through the construction of a predictive probability distribution of outputs, ideally

conditioned upon experimental data.

The goal of predictive modeling can be to provide decision makers with quantitative estimates of uncertainty to

factor into decisions, or it can be to provide physicists and modelers with information to help assess and improve

physics understanding and the quality of models. It is this second purpose that was the foundation of the Center for

Radiative Shock Hydrodynamics, the CRASH center. Our overarching project goal was to develop a simulator—the

CRASH code—that can predict in an unexplored region of the experimental input space after being assessed in a

different region of input space that has been simultaneously explored by experiments and simulations. That is, we

wish to use quantitative measures of sensitivity and uncertainty to guide decisions about experiments and modeling

improvements, and ultimately demonstrate that this program has resulted in improvements in predictive power in the

unexplored region of the input space. In the short span of this project, our computational sensitivity studies definitely

affected our understanding of the system of interest and helped guide the development of improved computational

models. But only by the end of the project had we become ready to use further predictive studies to guide our choices

in ways that might have produced significant improvements in predictive capability beyond those that would have

come naturally to any thoughtful developer of simulation models.

The specific focus of the project was radiative shocks, which develop when shock waves become so fast and hot

that the radiation from the shocked matter dominates the energy transport. This in turn leads to changes in the shock

structure. Radiative shocks are challenging to simulate, as they include phenomena on a range of spatial and temporal

scales and involve two types of nonlinear physics - hydrodynamics and radiation transport. Even so, the range of

physics involved is narrow enough that one can seek to model all of it with sufficient fidelity to reproduce the data.

The CRASH project builds upon the basic physical system shown in Figure 1. Ten (0.35 µm wavelength) laser

beams from the Omega laser [Boehly et al., 1995] are incident on a 20-µm thick Be disk, at an irradiance of∼ 7×1014

W/cm2 for 1 ns. This shocks the Be and then accelerates the resulting plasma to > 100 km/s. The leading edge of

this plasma drives a shock into Xe gas at 1.1 atm pressure with an initial velocity of ∼ 200 km/s. This produces the

observable structures shown schematically in Figure 1(b) and by a radiograph in Figure 1(c). The radiation from the

shocked Xe preheats the unshocked Xe. It also ablates the shock-tube wall, producing a wall shock that drives the

Xe gas inward. Where this wall shock meets the primary shock, the shock-shock interaction produces a noticeable

deflection of the dense Xe flow (dark in the radiograph). The Xe that flows through both the wall shock and the

oblique portion of the primary shock ends up with higher velocity and forms the material described as entrained Xe.

On a finer scale than is seen in the radiograph, the shocked Xe ions, which are initially heated to hundreds of eV, cool

rapidly as they heat the electrons, and the heated electrons further ionize the Xe and radiate most of their energy away.

In response, the shocked Xe layer, which is optically very thick, becomes several times denser. The resulting final

temperature in the shocked matter and characteristic radiation temperature is about 40 eV. In contrast, the radiation

mean free path in the unshocked Xe is much longer and the radiation transport is not diffusive there. We have published
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several papers describing this system and its experimental variability [Doss et al., 2010, 2011a,b, Drake et al., 2011].

Figure 1: (a) Schematic of a radiative shock experiment.

(b) Schematic of features in radiograph. (c) Radiograph.

The structure in the dense Xe may be due to a Vishniac-

type instability.

The radiograph in Figure 1 shows fundamentally

where the dense Xe is. Our goal was to predict the

shock location and metrics measuring wall-shock prop-

erties. The evidence for these predictions comes from

sets of simulations using the CRASH code, described be-

low and in publications [van der Holst et al., 2011, 2012,

2013]. Briefly, CRASH is a 3D radiation-hydrodynamic

code employing a Godunov-type hydrodynamic solver,

flux-limited multigroup diffusion for radiation transport,

flux-limited electron heat transport and the necessary

related electron physics, a 3D laser-energy deposition

package, and tabular treatment of equations of state and

opacities. In the present report, we discuss the path of

the project, the experiments, the simulations and several

related issues, and our predictive science studies. The

publications produced during this project are cited in the

appropriate sections of the report and are included as a

final appendix.

1.1 The path of the project

The CRASH project had a mandate to do predictive sci-

ence throughout, while also doing complex simulations

of a target physical system, and providing data to en-

gage the predictive models. We began with a widely

used simulation code developed for space-weather ap-

plications, BATSRUS [Toth et al., 2005]. This code in-

cluded a wide variety of MHD models but did not have

models for unmagnetized hydrodynamics, radiation, the

separate treatement of electrons and their heat transport,

or the deposition of laser energy. As our result, our first

major priority was to add enough capability to this code

to model our physical system of interest with reasonable

fidelity. This turned out to take 3.5 years, and dominated

the overall manpower expenditures for the project. We

call the code run with the features added by our project

the CRASH code, although in reality it is BATSRUS run

with use of a certain set of subroutines. In order to suc-

ceed with BATSRUS, we already had implemented solid
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software-verification practices. We continued these practices, and include a discussion of some of the related tests

within the report. More detail was provided in our earlier reports on the project.

 

 

 

 

(a) Fall 2010 H2D initialized

(b) Fall 2011 CRASH initialized

(c) Spring 2010 High Resolution

13 ns, 0.8 µm

(c) CRASH data

Figure 2: Simulations and data at 13 ns for the base

CRASH experiment of Figure 1. Both simulations have

0.8 µm effective resolution with 2 levels of AMR. (a) H2D

initialized (b) CRASH laser-package initialized (c) Experi-

mental radiograph, in which the layer is probably thickened

somewhat by tilt.

The CRASH experiments obtained a sequence of

data chosen in each year to best advance our ability to

conduct predictive studies, and then to provide the data

for the novel system that was our year-5 experiment.

This turned out to imply that all of them focused on

measuring different aspects of radiative shock behavior,

in support of assessing and improving code fidelity and

later in support of assuring that we could perform the

final experiment. Section 2 below discusses their se-

quence and results. Control of the experiments was es-

sential to obtain the data needed by the project, and also

to be able to analyze uncertainties with the necessary

depth. Fortunately, the experiments for CRASH were

strongly synergistic with the activities of our Center for

Laser Experimental Astrophysics Research, and so re-

quired only a modest investment of CRASH manpower

and funding.

Within a year of the project start date, we completed

and reported (in our annual report) simulations enabled

by the inclusion of hydrodynamic features and radiation

transport by gray diffusion in three dimensions. By 1.5

years into the project we reported results of simulation

run sets using CRASH 1.1, which had these features. We

released CRASH 2.0 just after two years into the project.

It included multigroup radiation transport and electron

physics including electron heat transport by flux-limited

diffusion. By 2.5 years into the project we reported re-

sults of simulation run sets using CRASH 2.1. Our mod-

eling then included all the physics needed to expect to

obtain simulations with reasonable fidelity. But we still

did not have results with good fidelity to the experimen-

tal data. We put a great deal of effort into the pursuit

of various hypotheses about why, but in the end the key

aspect turned out to be rooted in our approach to simu-

lating the laser-energy deposition.

With the intent of being able to do predictive science

studies as early as possible, we had chosen to use an ex-

isting Lagrangian code, H2D, to calculate the laser en-
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ergy deposition. H2D is a two-dimensional radiation hy-

drodynamics code that includes the ability to trace laser rays in three dimensions (important for accuracy) along with

other typical capabilities needed to model laser-plasma experiments. Using H2D did in fact enable us to accomplish a

key predictive study during the middle years of the project, and also enabled us to develop some novel methodology

for predictive science, relating to analyzing systems involving coupled models. (See Sec. 6.8.)

By two years into the project it was clear that our combined simulations were not producing results with good

fidelity, and we made the decision to develop a “laser package” for CRASH. At that point our completion of the

previous software development had freed up the required manpower. By 3.5 years into the project we had tagged

CRASH 3.0 and reported results showing that we now had simulations with good fidelity. Figure 2 illustrates this. It is

worthwhile to mention that we think H2D is a very good code for applications to which its Lagrangian approach is well

suited. This did not prove to include our experimental system, which generates very large vorticity. We discuss this

issue further in Sec. 3.5.3.1. It is also worth mentioning that attempts during this project to simulate our experimental

system with RAGE at LANL and FLASH at Chicago produced initial results very similar to what we got, and that

previous attempts by a graduate student to simulate it using HYDRA at LLNL did not succeed. No doubt an expert user

with any of these codes could tune them to produce better outcomes, but one point of pursuing prective science is to

stimulate code development that gets good results without expert tuning. Our experimental system is more well-suited

to challenging codes in this way than we had imagined, and could be used for further such work in the future.

Our simulation software work in the final phase of the proejct evolved toward making sequence of important

though minor improvements, the most significant of which are discussed later in this report. In addition, we undertook

several other studies, all discussed below in the report. We did a validation study of the hydrodynamic component. We

collaborated in a code-to-code comparison study. We did a study of solution verification in the context of our model.

We considered two aspects of model form uncertainty. One of these was an assessment of the importance of non-LTE

effects. The other, more extensive effort involved the use of TAMU’s PDT code, converted to solve for the transport of

thermal radiation, to examine errors resulting from the diffusive model used in CRASH. This was an example of the

kind of effort mentioned in the Executive Summary, in which one may need to develop a separate and sophisticated

separate code in order to assess model form uncertainty for some aspect of a some workhorse multiphysics simulation

code.

One aspect that deserves further comment is our continued work relating to opacities. We took an approach for the

project that provided an avenue to analyze uncertainties in opacities and equations of state. The CRASH calculations

evaluate these properties using data regarding the atomic levels present in the material to drive calculations based on

fundamental statistical physics. This enables one to consider uncertainties in knowledge of the atomic levels as a basis

to obtain uncertainties in these properties. One could not properly account for such uncertainties by analyzing only

the data in an opacity table. One of our students (at TAMU) completed a demonstration study showing how such an

approach could work. Direct comparison of our opacities and equations of state for the low-Z CRASH materials with

established results shows that the CRASH model produces results consistent with them. In the case of the Xe opacity,

however, the available atomic data provides a description of the actual structure that is so incomplete that the method

used by CRASH produces substantially inaccurate opacities. We thus ended up with a conflict between the need for

computational fidelity and the goal of evaluating uncertainty. There is some potential to develop statistical methods of

analyzing opacity tables to formulate uncertainties, but pursuing this is beyond the scope of what we could undertake.

For the purpose of most accurately predicting the year-5 experiment, computational fidelity won out, and we used the
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STA Xe opacities produced by some of our team members.

Throughout the project we conducted predictive science studies. These began with sensitivity studies using the

one-dimensional version of H2D, Hyades, and followed with one-dimensional studies that combined Hyades and

CRASH. We found throughout that the major challenge to doing predictive studies using a complex-multiphysics code

(or codes) is to accomplish the sets of simulation runs (run sets) that provide the necessary data. One is forced by

computational (and human) limitations to choose a reduced set of variables. Here variables includes not only the

physical aspects that define the laboratory experiment of interest, but also the physical parameters whose values are

imperfectly known (such as opacities) and the various numerical parameters that control the simulation (grid resolution

being a trivial example). This need for a reduced set of variables drives sensitivity studies. One then must define a

probability distribution and range to sample for each of the variables selected for the run set, and also specify all other

aspects of the simulation. Poor choices here, which may reflect ignorance rather than errors, can lead to a need to

redo many simulations. In our case this happened when we had to stop Run Set 11 to redefine the simulation domain.

Accomplishing the run set itself is not trivial either, as the large-scale compuational platforms are not stable in time.

The second-largest manpower investment for this project was devoted to the run sets and related activities.

These related activities included the extraction of metrics for the statistical portion of the predictive studies. Some

of our early activity included seeking to find ways to compare entire radiographic images pixel by pixel, a notion that

has some popularity at the labs. That experience showed that the initial simulation result must be extraordinarily close

to that of the laboratory experiment if this approach is to prove effective. For realistic predictive studies of complex

multiphysics systems, which involve variations of the simulation inputs corresponding to real uncertainties (as opposed

to tuning the result using knobs in the code), this now strikes at least some of us as unlikely to succeed. We then turned,

during the middle years of our project, to using metrics that were some approximation to taking moments of the data.

This might prove to be very effective for simulations with enough fidelity to make several moments useful, and with a

team that has time to really learn what they mean. In our case, working with a small number of such metrics was the

best we could do while the fidelity of the simulation output is poor. We describe these metrics and their extraction in

Sec. 6.2.1.

Throughout the project, shock location proved to be a metric we could extract with well-defined methods, and this

formed the basis for most of the statistical predictive studies. Two key aspects of these studies, from a methodological

point of view, is that they involved the specification of methods for assessing uncertainty in coupled models and in

using models of varying fidelity. These developments and the associated studies are discussed in Section 6. In two

cases we withheld all information about an experimental result until the first version of a certain predictive study was

complete. The first of these was the extrapolation of shock location to late time (Sec. 6.8), with the result revealed

during our third-year review. They agreed, but the uncertainty assigned to the shock location was large. The second

was the prediction of shock location for the year-5 experiment with the elliptical tube (Sec. 6.10). Here the predicted

range of shock locations overlapped with those observed within the experimental variability, which had been our

stated goal all along. A cultural note that may be of interest is that the physicists on our team were satisfied and even

impressed by this result, while the statisticians were not.

Later on in the project, as our computational fidelity improved, we finally developed robust ways to extract addi-

tional metrics that were specific to the structure of the system of interest, as is described in Sec. 6.2.2. It is notable

that these results finally provided some evidence of effects one could attribute to the limitations of the physics in the

CRASH model. In a system like ours with significant directionality, radiation transport based on diffusion should
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transport too much energy laterally. This ought to lead to excessive energy deposited in the walls of our shock tube,

so one might expect the wall shock to be further from the wall in the simulations than in the laboratory experiment.

We saw some evidence of this using these wall-shock metrics. Also supporting the notion that there remained too

much blowoff of wall material is the residual development of axial structure beyond that seen in the data, which (based

on studying the simulated results) seems likely to have affected our fidelity if we had extended the studies even later

in time. On the other hand, our elliptical tubes were selected because they create some variation in radiation energy

deposition with azimuthal angle, and we did not find a resolvable difference in wall shock properties between views of

the major or minor axis. When the project ended, we were within a few months of having a predicitve analysis based

on the wall shock metrics. For the reasons just discussed, this would have been telling, as would have been further

experiments responding to the analysis. Such activities still would be telling.
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2 The CRASH Experiments and Data

Year-5 experiment

Narrow tube with nozzle!
(Enables 2D HYADES initialization)

Base experiment

Side Views Rear Views

Be !
disk

600 µm dia. tube

600 x 1200 µm !
elliptical tube

600 µm dia. Xe-filled tube

1200 µm !
dia. section

Be !
disk

Be !
disk

Laser

Laser

Laser

Shock breakout
Be !
disk

Laser

Early time shock structure
Be !
disk

600 µm dia. Xe-filled tubeLaser

Wide Tube
Be !
disk

1200 µm dia. Xe-filled tubeLaser

Figure 3: Diagrams of the sequence of targets

used in the CRASH experiments. A specific dis-

cussion of the reasons for each experiment is

provided later in this section.

The selection of experiments for CRASH was driven by the needs

of predictive science. These experiments came in the form of one to

two “shot days” per year at the Omega laser facililty. It was easy to

decide what to do first – a full day of repetition of our basic shock

system, in order to assess its experimental vaiability. These data

became a primary focus for much of our predictive work, which

evolved as did our simulation tools. In the next three years the cru-

cial need was to improve the simulation code until it could model

the experiments with sufficient fidelity. This led us to choose ex-

periments that would help evaluate the dynamics in the code, pri-

marily by making measurements at different times. Using various

experimental techniques we have obtained data from about 0.5 ns

- 30 ns. By the middle of project year 4 our code did produce

simulations of reasonable fidelity, and our attention turned to the

long-planned variations in the target geometry. We proceeded to

do experiments with cylindrical nozzles and eventually with noz-

zles that directed the shock into an elliptical tube. This inherently

three-dimensionial experiment, which forced our predictions to ex-

trapolate beyond systems we had previously studied, provided the

key data for the final predictive study. Figure 3 illustrates the ex-

perimental sequence of the project.

In the following sections we discuss the experiments, providing

details on the experimental parameters and the measured shock lo-

cations. We also were able to obtain, in many cases, the location of

the “triple point”, where the wall shock driven by expansion of the

tube wall intersects the primary shock. These results are discussed

and tabulated below in Sec. 6.2.2.

2.1 Initial CRASH experiment

A 20 µm Be disk was irradiated with ten Omega laser beams that

were smoothed with a Distributed Phase Plate (DPP), which creates

a spatial profile of a super-Gaussian with an exponent of 4.5 and a

laser spot size of about 820 µm FWHM. The laser beams are further smoothed by the temporal beam-smoothing

technique Smoothing by Spectral Dispersion (SSD) to produce moving speckles in the beam spot about 5 µm in size.

The requested total laser energy was 3.8 kJ. The ablation pressure produced by the laser beams launches a shock into

the Be disk. Upon exiting the Be disk the shock moves into Xe gas at nominally 1.1 atm and at a density of 6.5 mg

cm−3. The gas is enclosed in a polyimide tube that has an outer diameter of 625 µm with 25 µm thick walls. The
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Figure 4: Left: As built basic CRASH target. Right: dimensions of the physically significant components.
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shock accelerates into the lower density gas at velocities of over 100 µm ns−1. It is moving fast enough that radiative

fluxes become important in this system.

The first CRASH experimental campaign comprised 11 shots (Omega shots 52660 52671). The targets were all

nominally identical replicas of a single design. Figure 4 shows a photograph and the dimensions. The experiments

were intended to quantify aspects of experimental repeatability related to target manufacturing and experimental exe-

cution. A target consists of a 20 +/- 1 m Be disk mounted on a 625 m ID polyimide tube having 25 µm-thick walls.

The tube and disk were mounted into the center of an acrylic shield, approximately 20 mm in diameter and fitted with

a 50 m bore hole to accept gas fill into the tube. Two gold wedges were attached to the shield to protect the primary

diagnostics of the experiment from x-rays produced during the driving event; this prevents the x-ray film on which

data are collected from being prematurely exposed. Preparing for shots, the tube is filled with Xe gas to a pressure of

1.1 atm, inserted into the Omega chamber, and then driven by 10 laser beams delivering 3.8 kJ in a 1 ns pulse to the

Be disk surface. Also attached to the shock tubes were a gold grid as a spatial fiducial and an Al strip with stepped

density increments as a fiducial for calibrating the diagnostic x-ray emission and assessing whether the x-ray spectrum

is as expected.

Primary diagnosis was accomplished by the construction of backlit pinhole targets (shown in Figure 5). Backlighter

targets consist of an acrylic frame designed to irradiate the target with x-rays from two emitters, collimated by pinholes.

The two x-ray beams are intended to be orthogonal to the target axis and to each other, and to be centered at a point

in the shock tube 2 mm from the drive disk. The x-rays were emitted from Va foils stood off from the rear of each

pinhole substrate. When each Va foil is illuminated by an additional 5 beams, delivering 70 J each in a 200 ps pulse,

it emits 5.2 keV x-rays, suitable for imaging the shocks. The x-rays transmitted through the target were recorded on

ungated x-ray film. Image plates were also used as supporting diagnostics, placed behind the film. These captured

additional photons to create a second image of each view of each shot. While not of as high a quality data as the data

obtained by film, the image plate data had a faster development time and was enabled rapid, well-informed decisions
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Figure 5: As built CRASH two-axis backlighter.

through the day.

Fifteen targets were constructed, of which the 11 that most closely matched the construction specifications were

used in the campaign. Backlighter illumination times were varied through the day. First, they were varied in order

to center the shock in the data range. After the third shot, they were varied only in some instances to obtain velocity

information. Four shots were timed with 1 ns spacing between the two views, and four shots were taken with both

views simultaneous. In all of these last eight shots, at least one view was timed for 13 ns after the drive event, in order

to obtain the largest set of equivalently timed, well-centered images possible. Figure 6 shows the 16 total radiographic

images collected during the campaign. This includes a damaged image from the first shot, which was compromised by

a film-loading error, and two images from the sixth shot, which was misaligned in the chamber. Four shots exhibited a

failure mode of unknown mechanism in which one view produced data and the other produced only blank film. This

could have been a difficulty of aligning the single backlighter frame adequately to properly position both of its two

backligher sources.

Figure 7 shows two photographs of the film recording both views of Shot 52667. These are simultaneous, orthog-

onal views, oriented so that the shock is traveling left to right in each case. The radiographic images show the shock

tube and radiating shock. Above the tube is the x-ray fiducial. Below the tube is the gold grid used as the spatial

fiducial. The shot numbers and input data from this first set of experiments are shown in Table 1, and the measured

shock locations and shocked Xe layer thickness are shown in Table 2. Additional experiment parameters and data are

shown in Table 3
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Figure 7: Two views of the shock in shot 52667

Shot number Be Thickness (µm) Laser Energy (J) Xe Pressure (atm) to (ns)

52661 21 3889.6 1.133 14

52661* 21 3889.6 1.133 16

52663 21 3882 1.167 13

52665 21 3892.4 1.133 13

52665* 21 3892.4 1.133 14

52667 21 3880.2 1.204 13

52667* 21 3880.2 1.204 13

52668 21 3859.8 1.105 13

52668* 21 3859.8 1.105 14

52669 21 3846 1.169 13

52670 21 3841.5 1.17 14

52671 21 3867.4 1.169 13

Table 1: Omega shot numbers and experimentally controlled variables. Note that two views are available for some

shots, yielding two observation times for some shots, and one repeated observation time (the two views were taken

simultaneously). From a predictive perspective, these 8 shots yield 12 measurements. View 2 data are marked with

asterisks (*). The drive disk thickness is uncertain to ±1µm.
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Shot Shock Xe layer

number Position (µm) width (µm)

52661 2308±100 125

52661* 2485±70 117

52663 2030±50 122

52665 2042±25 135

52665* 2178±75 115

52667 2085±25 167

52667* 2077±25 136

52668 2098±65 103

52668* 2310±75 137

52669 1940±75 150

52670 2038±275 137

52671 1943±300 121

Table 2: Omega shot numbers and experimentally observed data. Note that two views are available for some shots,

yielding two observation times for some shots, and one repeated observation time (the two views were taken simulta-

neously). From a predictive perspective, these 6 shots yield 10 measurements. View 2 data are marked with asterisks

(*).

2.2 Uncertainties in the CRASH experimental sequence

Some of the uncertainty in quantities of interest for prediction is due to uncertainty in the experimentally “controlled”

parameters, referred to in our predictive studies as x. We have characterized many of these during the course of the

CRASH project, and we have estimated pdfs of them based on the database of experiments. Figure 8 is an example of

a set of laser energy pdfs from several of the CRASH experimental campaigns. These vary systematically from date-

to-date due to changes in the Omega facility; during one phase we found and the facility later corrected a tendency for

the first shot of the day to come in low. The variability in facility performance in itself raised a challenge: we had to

predict before the year-5 experiment is conducted, and so had to estimate in advance the pdf of laser energies on the

day of the year-5 experiment.

Figure 9 shows a similar set of distributions for the Xe fill gas pressure; this shows similar changes from experiment

to experiment, as the procedures for constructing and filling the shock tubes evolve and as time-delays in firing the

laser change uncontrollably from campaign to campaign and shot to shot. The uncertainty of the backlighter timing

was significantly reduced for the year-5 experiment, in part in response to our input to the facility.

2.3 Shock Breakout Experiments

A key concern in modeling a laser-driven radiative shock is how accurate the deposition of energy and momentum

is. The fact that this is problematic is evident because simulations generally need to reduce the laser energy to obtain

correct results, especially in 1D but even in 2D. This makes it very worthwhile to obtain experimental data that can
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Date Shot Laser disk thick- gas press- time (ns) shock loc-
number energy (J) ness (µm) ure (atm) ation (µm)

2008-Oct 52660 3853 21 1.33

2008-Oct 52661 3890 21 1.13 14 2286

2008-Oct 52661 3890 21 1.13 16 2500

2008-Oct 52663 3890 21 1.17 13 2030

2008-Oct 53664 3820 21 1.09 13 1798

2008-Oct 53664 3820 21 1.09 13 1748

2008-Oct 53665 3892 21 1.13 14 2200

2008-Oct 53665 3892 21 1.13 13 2075

2008-Oct 53666 3859 21 1.2

2008-Oct 56667 3880 21 1.2 13 2096

2008-Oct 53667 3880 21 1.2 13 2073

2008-Oct 53668 3860 21 1.11 14 2315

2008-Oct 53668 3860 21 1.11 13 2105

2008-Oct 53669 3846 21 1.17 13 1970

2008-Oct 53670 3842 21 1.17 14 2043

2008-Oct 53671 3867 21 1.17 13 1955

2010-Aug 59023 3744 21 1.16

2010-Aug 59024 3730 21 1.09

2010-Aug 59025 3801 21 1.24

2010-Aug 59026 3830 21 1.28

2010-Aug 59027 3787 21 1.31 20 2737

2010-Aug 59029 3750 21 1.36 26 3489

2010-Aug 59029 3750 21 1.36 26 3434

Table 3: Experimental parameters and shock location for CRASH experiments performed with the nominal tube over

multiple years. In some instances an experiment produces data from 2 views and provides 2 data points. Experiments

are listed that did not produce data. The uncertainty for the observation time is ± 0.5 ns and ± 100 µm for the shock

location.
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Figure 8: PDFs of the laser energy distribution at Omega.

Figure 9: PDFs of the Xe fill pressure distribution in the CRASH targets.
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Figure 10: A schematic of the target. A nominally 20 µm Be disk is irradiated with several laser beams. The

diagnostics (2 VISARs and SOP) view the rear surface of the target and measure the shock breakout time.

validate the early behavior in the simulation. For this reason we pursued shock breakout measurements.

To characterize the initial state of the radiative shock experiment we performed 12 experiments to measure the

shock breakout from a Be disk over three experimental days. The majority of the Be disk thicknesses ranged from

19 - 21 µm ± 0.5 µm where the average disk thickness was 19.9 µm with a standard deviation of 0.6 µm. Two

experiments were performed with a 10 µm ± 0.5 µm disk. For the 12 experiments performed, the on-target total laser

energy averaged 3.841 kJ ± 0.001 kJ. The range of laser energy for these experiments was 3.403 kJ - 3.946 kJ with

a standard deviation of 0.152 kJ. The laser pulse was a 1 ns square pulse with about 100 ps of rise and fall time. The

nominal on-target laser irradiance was about 7 × 1014 W/cm2. Figure 10 shows a sketch of this experiment.

When the shock emerges from the rear surface it is recorded on multiple experimental diagnostics. These diag-

nostics are calibrated and the amount of time it takes for the shock to move through the Be disk is inferred. Three

instruments were used on each experiment to make these measurements and in the majority of experiments all three

collected data. Two of the instruments were a Velocity Interferometer System for Any Reflector (VISAR) [Barker and

Hollenback, 1972] set to different sensitivities. A VISAR uses a laser with a wavelength of 532 nm to probe a surface

and detect the rate of change in the optical path to a surface. This can lead to a measurement of a velocity profile of

a surface from which one can infer average pressures. For the experiment reported here, the probe laser is reflected

off of the rear (non laser-irradiated side) of the Be disk. Since the Be disk is opaque to the probe laser light, only

movement on the rear surface, such as the shock exiting the rear surface of the disk, is recorded. This is referred as

shock breakout and the time at which it occurs is referred to as the shock breakout time.

The third diagnostic used to measure the shock breakout time was a Streaked Optical Pyrometer (SOP)[Miller

et al., 2007]. A SOP is a passive detector that records thermal emission on a streak camera which results in a 2D image

showing the surface emission in space and time. SOP views the rear surface of the target and as the hot shock emerges

from the rear of the Be disk its emission will be recorded with the SOP, from which the breakout time can be inferred.

Examples of the typical VISAR and SOP data from this experiment are shown in Figure 11. The SOP data is

shown in the left panel with time increasing to the right. There is no detectable emission from the rear surface of the

target until the shock emerges from the rear surface of the disk. The thin bright line on the left of this image occurs

as the laser pulse is initiated although for unknown reasons. It should be noted that the SOP (and VISAR) data show

curvature in the breakout feature. This is due to the profile of the laser spot, which results in a curved shock as the Be

disk is larger than the laser spot. For the radiative shock experiment the shock tube is 575 m in diameter; the shock

breakout feature is relatively planar over that region.
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Figure 11: Typical data from experiments performed with a nominally 20 µm thick Be disk from the SOP (left panel)

and VISAR (right panel). Both diagnostics view an 800 µm high region on the rear surface of the Be disk and record

when the shock breaks out of the disk. The fiducials on the bottom of each image are spaced 548 ps apart.
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Figure 12: Shock breakout time for Be disks of 19, 20 and 21µm. Data points are offset in thickness to discern

between individual experiments. The error bars on individual points indicate the uncertainty due to that diagnostic and

the larger error bar on the right represents the systematic error in the experiment due to the uncertainty in the timing

of the laser pulse irradiating the Be disk and the laser pulse that creates the fiducial for the experimental data.
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Date Shot Laser disk thick- gas press- time (ns) shock loc-
number energy (J) ness (µm)

2009-Dec 56301 3838 21 481 481 462

2009-Dec 56302 3925 20 476 487 441

2009-Dec 56303 3938 20 431 435 397

2009-Dec 56304 3888 19 457 477 456

2009-Dec 56305 3915 20 448 487 470

2009-Dec 56306 3913 20 436

2009-Dec 56307 3923 19 467 487 470

2009-Dec 56313 3946 19 439 426 413

2010-Aug 59010 3403 10 273 226

2010-Aug 59011 3720 20 467 484

2010-Aug 59014 3844 10 254 236

Table 4: Experimental parameters and shock breakout time for CRASH experiments. Times are reported for each of

the threes diagnostics used. Each diagnostic time has an uncertainty of ± 50 ps.

The VISAR data is shown in the right panel in Figure 11 with time increasing to the right. In this case, the probe

beam is reflected off of the rear surface of the Be disk, which produces the bright signal on the left. The thin, bright

line in the image is the shock breaking out of the Be disk. Prior to shock breakout, there is an area on the image with

no signal. This occurs after the initial laser pulse has begun and the VISAR probe beam is absorbed, which often

occurs at high laser irradiances [Boehly] until the shock breaks out of the disk and the shock itself is reflective.

Both of these VISAR and SOP measurements can be calibrated in time using the timing fidicials, which are

created with an optical laser, seen at the bottom of both of the images shown in Figure 11. Figure 12 shows the results.

The shock breakout time was measured to the 50% rise of the feature indicating breakout. To discern individual

experiments, the thickness of each disk has been offset 0.2 µm. The 3 data points for each disk are from the 2 VISARs

and the SOP instruments. In some cases, 1 or 2 of the diagnostics did not produce usable data. The vertical error bars

on each point are due to the error in each diagnostic measurement, which is due to the sensitivity of the measurement.

The VISARs (set to different sensitivities) were the most sensitive and had errors of ± 10 ps and ± 20 ps while the

SOP had a larger error of ± 30 ps. The error in the disk thickness is ± 0.5 µm. Experimental parameters and shock

breakout times are shown in Table 4. There exists a larger systematic error in the time calibration due to the timing of

the fiducial laser relative to the laser pulse used to irradiate the disk. The timing of these 2 lasers is known to ± 50

ps. This timing should be consistent on a single experimental day, but the data shown in Figure 12 was taken over 3

experimental days so the maximum credible offset for the data set is± 50 ps. The systematic timing error is the largest

error for the data and encompasses the entire timing range observed, which was 397 - 487 ps. This is indicated by a

± 50 ps error bar on the plot. Under the experimental conditions described above the average shock breakout time for

the nominally 20 µm disk was 457 ps.
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Figure 13: A photograph (top) and model showing laser the interaction of laser beams (bottom) with a target used to

create a radiative shock in laboratory experiments. A Be disk behaves as a piston to shock and compress Xe gas in a

polyimide tube. The tube and target stalk are inserted into an acrylic block. Two V foils are attached to the target to

create x-rays to enable observation of the shocked Xe.

2.4 Early-time radiative shock experiments

As the project moved into year 3, our simulations continued to produce relatively poor fidelity, later overcome by

the addition of the laser package. We came to understand that material released early in time from the walls of the

cylindrical shock tube was producing a pressure spike on axis that pushed material forward and altered the shape of

the shocked Xe layer. This led us to choose to pursue early time measurements to assess whether the simulations were

badly wrong about the early behavior.

The target used in these experiments is shown in the top panel of Figure 13. The tube and stalk are inserted into

a machined acrylic block. Gas flows through the target stalk and through channels machined into the block to the

polyimide tube. The gold grid is used to spatially calibrate the image. There are 2 diagnostic techniques used for this

experiment: area radiography and streaked radiography, which will be discussed later in this paper. The top panel of

Figure 13 is the diagnostic view for the area radiography technique. The view for the streaked radiography technique

would be similar except there would be a wire placed across the tube axis to be used an as a spatial fiducial. The two

diagnostic views are orthogonal.

In this experiment, two radiographic techniques (area and streaked radiography) were utilized on a single experi-

ment in an orthogonal geometry. This results in a measurement of velocity over several nanoseconds and an image of

the shock from an orthogonal view. Both of these techniques image the x-ray transmission through the experimental

target. In both cases, a 5 µm V foil is placed about 2 mm from the target. The placement of these foils is shown in
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Date Shot Laser disk thick- gas press- time (ns) shock loc-
number energy (J) ness (µm) ure (atm) ation (µm)

2010-Dec 60395 3139 21

2010-Dec 60397 3684 21

2010-Dec 60398 3847 21 1.01

2010-Dec 60399 3683 21 1.09

2010-Dec 60400 3728 21 1.02

2010-Dec 60402 3781 21 1.04

2010-Dec 60404 3895 21 1.03 3.9 540

2010-Dec 60404 3895 21 1.03 4.1 578

2010-Dec 60404 3895 21 1.03 4.3 600

2010-Dec 60404 3895 21 1.03 4.5 642

2010-Dec 60405 3699 21 1.01 2.9 302

2010-Dec 60405 3699 21 1.01 3.1 339

2010-Dec 60405 3699 21 1.01 3.3 364

2010-Dec 60405 3699 21 1.01 3.5 397

2011-Feb 61212 3183 22 1.25 1.9 396

2011-Feb 61212 3183 22 1.25 2.4 448

2011-Feb 61212 3183 22 1.25 2.6 471

2011-Feb 61212 3183 22 1.25 2.8 488

2011-Feb 61212 3183 22 1.25 3.0 513

2011-Feb 61212 3183 22 1.25 3.3 544

2011-Feb 61212 3183 22 1.25 3.6 573

2011-Feb 61212 3183 22 1.25 4.1 624

2011-Feb 61212 3183 22 1.25 4.2 642

2011-Feb 61212 3183 22 1.25 2.0 490

2011-Feb 61212 3183 22 1.25 3.9 490

2011-Feb 61214 3759 22 1.21 6.5 917

2011-Feb 61214 3759 22 1.21 6.0 853

2011-Feb 61214 3759 22 1.21 5.5 779

2011-Feb 61215 3695 22 1.20 2.5 401

2011-Feb 61215 3695 22 1.20 2.9 440

2011-Feb 61215 3695 22 1.20 3.3 492

2011-Feb 61215 3695 22 1.20 3.6 533

2011-Feb 61215 3695 22 1.20 4.1 581

Table 5: Experimental parameters for early time CRASH experiments. The error in the shock location is ± 30 µm

and the error in the observation time is ± 0.2 ns.
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Date Shot Laser disk thick- gas press- time (ns) shock loc-
number energy (J) ness (µm) ure (atm) ation (µm)

2011-Feb 61220 3695 22 1.20 4.5 616

2011-Feb 61216 3844 22 1.32 6.0 812

2011-Feb 61216 3844 22 1.32 5.5 769

2011-Feb 61216 3740 22 1.11 1.6 389

2011-Feb 61216 3740 22 1.11 1.8 410

2011-Feb 61216 3740 22 1.11 2.0 438

2011-Feb 61216 3740 22 1.11 2.2 471

2011-Feb 61216 3740 22 1.11 2.6 510

2011-Feb 61219 3856 22 0.98 3.1 560

2011-Feb 61219 3856 22 0.98 3.6 602

2011-Feb 61219 3856 22 0.98 4.0 651

2011-Feb 61219 3856 22 0.98 4.6 700

2011-Feb 61219 3856 22 0.98 5.2 767

2011-Feb 61219 3856 22 0.98 5.5 793

2011-Feb 61219 3856 22 0.98 4.5 703

2011-Feb 61219 3856 22 0.98 4.0 636

2011-Feb 61219 3856 22 0.98 3.5 560

2011-Feb 61219 3856 22 0.98 4.5 703

2011-Feb 61219 3856 22 0.98 4.0 636

2011-Feb 61219 3856 22 0.98 3.5 560

2011-Feb 61221 3821 22 1.19 3.0 499

2011-Feb 61221 3821 22 1.19 3.8 559

2011-Feb 61221 3821 22 1.19 4.1 589

2011-Feb 61221 3821 22 1.19 5.7 748

2011-Feb 61221 3821 22 1.19 6.2 787

2011-Feb 61221 3821 22 1.19 6.6 830

2011-Feb 61221 3821 22 1.19 6.9 869

2011-Feb 61221 3821 22 1.19 4.0 537

2011-Feb 61221 3821 22 1.19 3.5 485

2011-Feb 61221 3714 22 1.19 3.1 542

2011-Feb 61221 3714 22 1.19 3.5 575

2011-Feb 61221 3714 22 1.19 3.9 616

2011-Feb 61221 3714 22 1.19 4.4 666

2011-Feb 61221 3714 22 1.19 4.8 712

2011-Feb 61221 3714 22 1.19 5.1 748

2011-Feb 61221 3714 22 1.19 6.0 828

Table 6: Experimental parameters for early time CRASH experiments. The error in the shock location is ± 30 µm

and the error in the observation time is ± 0.2 ns.
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Date Shot Laser disk thick- gas press- time (ns) shock loc-
number energy (J) ness (µm) ure (atm) ation (µm)

2011-Feb 61221 3714 22 1.19 6.4 860

2011-Feb 61221 3714 22 1.19 6.7 891

2011-Feb 61221 3714 22 1.19 4.5 677

2011-Feb 61221 3714 22 1.19 4.0 606

2011-Feb 61221 3714 22 1.19 3.5 536

2011-Feb 61221 3714 22 1.19 4.5 677

2011-Feb 61221 3714 22 1.19 4.0 606

2011-Feb 61221 3714 22 1.19 3.5 536

Table 7: Experimental parameters for early time CRASH experiments. The error in the shock location is ± 30 µm

and the error in the observation time is ± 0.2 ns.

the bottom panel of Figure 13. The foil is irradiated by additional laser beams at some time after the experiment is

initiated by the main laser pulse. This generates He-α like x-rays that pass through the target. This x-ray energy was

chosen because it is strongly absorbed in the shocked Xe layer, but transmissive in the unshocked layer. This provides

contrast in the resulting image.

An example of an x-ray streaked radiograph is shown in the left panel of Figure 14. Position is increasing away

from the Be disk to the right and time is increasing as one moves upwards in the image. Typically, dark regions are

associated with regions of low transmission due to high opacity. The shock is the dark vertical feature moving from

the bottom left to the top center of the image. This indicates that the shock is approaching the fiducial wire, which is

the thick, dark line on the right side of the image. This particular radiograph was imaged from about 2 ns to 4 ns and

the shock moved from about 400 µm to 650 µm.

An example of area radiography data (from 1 of the 16 pinholes) is shown in the right panel of Figure 14. In this

image the shock tube walls are the horizontal dark lines on the upper and lower regions of the image. The shocked Xe

is flowing to the right and the fiducial grid is in the upper portion of the image. The Be is to the left of the shocked

Xe, but is transparent to the x-ray energy used to create this image. This radiograph was observed at 4.5 ns after the

initial laser pulse began. The shock is about 600 µm from the initial surface of the Be disk and is about 50 µm thick

yielding an apparent compression ratio of about 12. This is a lower limit because the layer is almost certainly tiled

along the line of sight of the instrument. Analysis of tilting in a collection of data at later times (near 13 ns) found that

the actual inferred compression was ∼ 22 [Doss et al., 2011b]. A list of experimental parameters and shock locations

for these early time experiments are shown in Tables 5, 6 and 7.

2.5 Preparations for tubes with elliptical profiles

In October 2011 we executed experiments that began to explore the effects of geometry on the radiative shock system.

This day of experiments served as a transition from the cylindrical tubes of 600 µm diameter we have used previously

toward the year 5 targets, which have an initial cylindrical section of 1200 µm diameter that then necks down to an

elliptical tube having axes of 1200 µm by 600 µm. We choose to study 3 variations in geometry: wide tube, circular
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Figure 14: Typical x-ray streaked radiographic (left) and area radiographic (right) data. The shocked Xe is labeled in

both images and is moving to the right. In the streaked radiograph the data was observed between about 2 and 4 ns

and the shock moved from about 400 µm to 650 µm. In the area radiograph the shock has moved about 600 µm from

the laser-irradiated surface of the Be disk at the observation time of 4.5 ns.
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nozzle tube and elliptical nozzle tube. Side and rear views of these tubes and their dimensions are shown in Figure 15.

Figure 15: Schematics of tube geometries for the nominal experiments (upper right) and the three geometries used in

October 2011, the wide tube(lower right), the cylindrical nozzle (upper left) and the elliptical nozzle (lower left). The

elliptical nozzle will be used in the Year 5 experiment.

We shot targets having a straight, cylindrical tube of 1200 µm diameter and targets having an initial cylindrical

section of 1200 µm diameter and a circular nozzle that reduced the diameter to 600 µm. Data from these targets

were used with sets of simulations as part of the assessment of predictive capability for our year-5 experiments. We

also shot targets in the year 5 configuration, as recommended by the Year 3 Review Team report. The purpose of

these experiments was to develop and demonstrate the capability to perform such experiments. This was particularly

important in the context of target fabrication. We pursued three avenues for production of these targets. One of them

succeeded. Figure 16 shows one of these targets. Data from this type of target was not used in the predictions in

advance for the year-5 experiments.

Orthogonal ungated radiography was used to diagnose these experiments. X-ray radiographs from an experiment

performed with an elliptical nozzle tube are shown in Figure 17. The left panel shows the narrow view of the elliptical

tube and was taken at t = 30 ns. The right panel in Figure 17 shows the wide view of the target at t = 28 ns. The

most noticeable difference from the nominal experiment in the structure of the shock is the curvature of the shocked

Xenon in the wide view. This is expected as the laser spot is smaller than the wide dimension of the tube. A list of

experimental parameters and shock locations for these the preparatory experiments with varying tube geometry are

shown in Table 8.

2.6 The Year 5 Experiments

The 5th year CRASH experiment was completed on October 11, 2012 at the Omega Laser Facility. The final experi-

ment for the project focused on the effects of tube geometry on the evolution of a radiative shock. A schematic of the

experiment is shown in Figure 18. The 20 µm thick Be disk is followed by an nozzle-shaped polyimide tube, tapered

to an elliptical cylinder. The tube is initially a circular shape with an outer diameter of 1200 µm. After a length of 500

µm, the cylinder tapers to an elliptical tube with a major axis of 1200 µm and a minor axis of 625 µm. The side and
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Figure 16: Photographs of a target for the year-5 experiment. An acrylic superstructure supports the nozzle, which

mates with a polyimide tube that has been shaped by heating and cooling while distorted.

Date Shot Target Laser disk thick- gas press- time (ns) shock loc-
number type energy (J) ness (µm) ure (atm) ation (µm)

2011-Oct 63766 elliptical 3910 1.1

2011-Oct 63768 circular 3827 21.6 1.1 26 3558

2011-Oct 63768 circular 3827 21.6 1.1 26 3665

2011-Oct 63769 wide 3832 22.2 1.0 26 3347

2011-Oct 63769 wide 3832 22.2 1.0 26 3449

2011-Oct 63771 elliptical 3759 1.1

2011-Oct 63772 circular 3848 1.0

2011-Oct 63773 wide 3866 22.4 1.0 28 3413

Table 8: Experimental parameters and shock location for CRASH experiments performed with varying tube geometry.

Experiments are listed that did not produce data. The uncertainty in the shock location is± 100 µm for the observation

time is ± 0.1 ns.
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rear view of the target are shown in Figure 18.

A picture of the target used in the 5th year experiment is shown in Figure 19. The large acrylic super structure is

used for multiple reasons. The conical part with gold wedges serves as a diagnostic shield. The base of the acrylic

structure contains the elliptical nozzle shape that has been machined into the acrylic. An elliptical polyimide tube is

inserted into the acrylic, forming the shape shown in Figure 18. The bottom of the acrylic component is also used to

anchor the rear end of the tube and attach the gas fill hose, which is used to fill the tube with Xe gas.

The main diagnostic for this experiment was dual, orthogonal x-ray radiography. This allows us to obtain 2

radiographic images from a single experiment. In this case, we looked at the minor and major axes of the target. Two

radiographs are shown in Figure 20 where the left panel shows the minor axis of the target and the major axis is shown

on the right. In both images the shock is moving to the right and has been spatially calibrated using the fiducial grid

in the lower portion of each image. Each image was taken at 26 ns after the initial laser pulse irradiated the Be disk.

Wall shocks are visible in each image as is a large amount of structure in the shocked Xenon. It should be noted that

in the wide view the shock front appears to be more curved and has collapsed to a very thin shell.

For this experiment data were obtained for 9 experimental shots with dual radiographs acquired on all but 1 shot.

The laser energy for the shot day varied from 3.807 kJ to 3.925 kJ and the gas pressure varied from 1.06 to 1.19 atm.

All Be disks were within 0.5 µm of the nominal thickness of 20 µm. The data have been analyzed to extract the shock

position and other metrics. A plot of shock location for this data set is shown in Figure 21 with appropriate error bars

for shock position and observation time. Figure 22 shows an overall summary of all shock location data. Section 6

below shows a variety of comparisons of these data with simulations.

Figure 17: Radiographic images from the October 2011 experiment that explored the effect of variation in tube ge-

ometry on the radiative shock system. The images shown here were from an experiment that used an elliptical nozzle

tube. The image on the left is a view of the narrow view of the elliptical tube at t = 30 ns and the image on the right is

a view of the wide part of the tube at t = 28 ns.
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Date Shot Laser disk thick- gas press- time (ns) shock loc-
number energy (J) ness (µm) ure (atm) ation (µm)

2012-Oct 67701 3925 20.6 1.16 26 3818

2012-Oct 67702 3902 20.8 1.12 26 3778

2012-Oct 67702 3902 20.8 1.12 26 3725

2012-Oct 67703 3850 20.8 1.1 26 3337

2012-Oct 67703 3850 20.8 1.1 26 3166

2012-Oct 67704 3899 20.6 1.1 26 3593

2012-Oct 67704 3899 20.6 1.1 26 3686

2012-Oct 67705 3855 20.5

2012-Oct 67706 3875 20.5 1.19 26 3612

2012-Oct 67706 3884 20.6 1.19 26 3581

2012-Oct 67706 3884 20.6 1.18 26 3548

2012-Oct 67707 3884 20.6 1.18 26 3500

2012-Oct 67709 3807 20.8

2012-Oct 67710 3903 20.6 1.06 26 3653

2012-Oct 67710 3903 20.6 1.06 26 3556

2012-Oct 67711 3874 20.6 1.12 26 3645

2012-Oct 67711 3874 20.6 1.12 26 3646

Table 9: Experimental parameters and shock location for CRASH experiments performed with elliptical tubes. Ex-

periments are listed that did not produce data. The uncertainty in the shock location is ± 100 µm for the observation

time is ± 0.1 ns.
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Figure 18: Side and rear schematic of an elliptical nozzle target. The Be disk is nominally 20 µm thick. The outer diameter of the

polyimide tube is initially 1200 µm. After 500 µm there is a 500 µm taper to an elliptical shape. The major axis of the ellipse is

1200 µm and the minor axis is 625 µm.

target stalk

polyimide tube

gas fill hose

diagnostic shield

acrylic superstucture

Figure 19: Picture of CRASH target for the Year 5 experiment. The elliptical nozzle is machined into the acrylic super structure

and an elliptical-shaped polyimide tube is inserted into the acrylic.
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Figure 20: Radiographic images of a single experiment from orthogonal views. The radiative shock is moving to the

right and the minor axis of the ellipse (left) and the major axis (right) were imaged. Both images were taken 26 ns

after the initial laser pulse began.

Figure 21: The shock location v. time for multiple experiments. The experimental error is ± 100 µm for the shock location and ±
100 ps in the observation time.
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Figure 22: The shock location vs. time for multiple experiments. The experimental error is ±100µm for shock

location and ±100 ps in the observation time.
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3 The CRASH code

We began the CRASH project with an existing code for compressible plasmas: the BATS-R-US code [Powell et al.,

1999, Toth et al., 2012]. We extended it with a new radiation-transfer and heat-conduction capability. This new

combination, together with the equation-of-state and multigroup opacity solver, is called the CRASH code. This code

uses the recently developed parallel Block Adaptive Tree Library (BATL) [Toth et al., 2012] to enable highly resolved

radiation hydrodynamic solutions. The implemented radiation hydrodynamic schemes solve for gray or multigroup

radiation diffusion models in the flux-limited diffusion approximation. Since radiative shocks are the main application

for CRASH, we have also implemented a separate electron pressure equation with electron thermal heat conduction.

For the electron heat conduction, we have added the option of a flux limiter to limit the thermal flux with the free-

streaming heat flux.

The multi-material radiation hydrodynamic equations are solved with an operator split method that consists of

three substeps: (1) solving the hydrodynamic equations with standard finite volume shock-capturing schemes, (2)

the linear advection of the radiation in frequency-logarithm space, and (3) the implicit solution of the radiation, heat

conduction, and energy exchanges. For the implicit solver, standard Krylov solvers are used together with a Block

Incomplete Lower-Upper decomposition (BILU) preconditioner. This preconditioner scales well up to 1000 processors

on present-day parallel computers. The pieces of the scheme are described below.

In the following, Section 3.1 introduces the radiation hydrodynamic equations for multi-material plasmas, in a

form general enough to apply at high energy density. Section 3.2 describes the numerical algorithms to solve these

equations.

3.1 Equations of radiation hydrodynamics in dense plasmas

The equations of radiation hydrodynamics describe the time evolution of both matter and radiation. For the applica-

tions that supported the work reported here, the code must be able to model matter as a high energy density plasma that

is in LTE so that the population of all atomic and ion states can be obtained from statistical physics (see for instance

Landau and Lifshitz [1980]). We allow for multiple materials throughout the spatial domain of interest, but restrict the

analysis to plasma flows that are far from relativistic. The materials can be heated to sufficiently high temperatures

so that they can ionize and create free electrons, introducing the need for a time evolution equation for the electron

energy density. The electrons transfer heat by thermal heat conduction and emit and absorb photon radiation. The

radiation model discussed in this section is non-equilibrium diffusion, in which the electron and radiation temperature

can be different. We approximate the radiation transfer with a gray or multigroup flux-limited diffusion (FLD). This

model is also of interest for application to a number of astrophysical problems.

In the following subsections, we will describe the radiative transfer equations for the evolution of the multigroup

radiation energy densities (Section 3.1.1) in the FLD approximation (Section 3.1.5). The coupling of the radiation

field to the two species hydrodynamic equations of electrons and ions are discussed in Section 3.1.2. In Section 3.1.3,

the method for tracking the different materials is treated, while the lookup tables used for of the EOS and opacities are

mentioned in Section 3.1.4.
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3.1.1 Radiation Transport

In this section, we will build up the form of the radiation transport in the multigroup diffusion approximation that

is used for the implementation in the CRASH code. The spectral pressure tensor is often approximated in the form

[Mihalas and Weibel-Mihalas, 1984]

Pν(r, t,ν) = Eν Tν , (1)

where

Tν(r, t,ν) =
1
2
(1−χν)I+

1
2
(3χν −1)

Fν Fν

|Fν |2
, (2)

is the spectral Eddington tensor, χν is the Eddington factor, and I is the identity matrix. The second term on the right

hand side is a dyad constructed from the direction of the spectral radiation flux. The pressure tensor can be used to

arrive at a time evolution equation for the solid angle integrated spectral radiation energy [Buchler, 1983]

∂Eν

∂ t
+∇ · (Eν u)−ν

∂

∂ν
(Pν : ∇u) = diffusion+ emission− absorption, (3)

which contains the velocity u of the background plasma. Here the colon denotes the contraction of the two tensors Pν

and ∇u. The processes described by the symbolic terms on the right hand side of equation (3) will be described below.

Setting the Eddington factor χν = 1/3 corresponds to the radiation diffusion model. In this case the radiation is

assumed to be effectively isotropic and the spectral radiation pressure can be described by the scalar

pν =
1
3

Eν = (γr−1)Eν , (4)

where we have introduced the adiabatic index of the radiation field, which in this case has the relativistic value γr = 4/3.

The time evolution for the spectral energy density can then be simplified to

∂Eν

∂ t
+∇ · (Eν u)− (γr−1)(∇ ·u)ν ∂Eν

∂ν
= diffusion+ emission− absorption. (5)

The second and third terms on the left hand side of equation (5) express the change in the spectral energy density

due to the advection and compression of the background plasma, which moves with the velocity u, as well as the

frequency shift due to compression. In the free-streaming limit where the radiation hardly interacts with the matter,

χν approaches one. In this section we will keep χν = 1/3 and at the same time use a flux-limited diffusion for the

free-streaming regime whenever needed (see Section 3.1.5).

The set of equations for the spectral energy density (5) still consists of an infinite number of equations, one for

each frequency. A finite set of governing equations to describe the radiation transport in the multigroup diffusion

approximation is obtained when we choose a set of frequency groups. Here we enumerate groups with the index,

g = 1, . . . ,G. The interval of the photon frequencies, relating to the gth group is denoted as [νg−1/2,νg+1/2]. A discrete

set of group energy densities, Eg, is introduced in terms of the integrals of the spectral energy density of the frequency

group interval:

Eg =
∫

νg+1/2

νg−1/2

Eν dν . (6)

Now we can integrate equation (5) to arrive at the desired set of the multigroup equations:

∂Eg

∂ t
+ ∇ · (Egu)+(γr−1)Eg∇ ·u− (γr−1)(∇ ·u)

∫
νg+1/2

νg−1/2

∂ (νEν)

∂ν
dν

=
∫

νg+1/2

νg−1/2

(diffusion+ emission− absorption)dν . (7)
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The fourth term on the left hand side is a frequency shift due to the plasma compression. This term is essentially a

conservative advection along the frequency axis.

In the context of the multi-group radiation diffusion, a discussion about the stimulated emission is not less impor-

tant than LTE. Excellent accounts on the stimulated emission exist in the literature, see for instance Zeldovich and

Raizer [1966]. Here, we merely summarize how the stimulated emission modifies the absorption opacity κa
ν obtained

from, e.g., opacity tables. This is important when dealing with externally supplied opacity tables, since the CRASH

code assumes that the absorption opacities are corrected. Integrating the total absorption and emission over all direc-

tions and summing up the two polarizations of the photons, the following expression can be derived for the emission

and absorption

emission− absorption = cκ
a
ν

′ (Bν −Eν) , (8)

where the effective absorption coefficient, κa
ν
′, is introduced to account for the correction due to stimulated emission:

κ
a
ν

′ = κ
a
ν

(
1− exp

[
− ε

kBTe

])
, (9)

in which ε = hν is the photon energy, kB is the Boltzmann constant, and Te is the electron temperature. We also

introduced the spectral energy density distribution of the black body radiation (the Planckian)

Bν =
8π

h3c3
ε3

exp[ε/(kBTe)]−1
. (10)

The total energy density in the Planck spectrum equals B=
∫

∞

0 dνBν = aT 4
e , where a= 8π5k4

B/(15h3c3) is the radiation

constant.

We use the standard definition of the group Planck mean opacity κPg and group Rosseland mean opacity κRg

[Mihalas and Weibel-Mihalas, 1984]

κPg =

∫ νg+1/2
νg−1/2

dνκa
ν
′Bν

Bg
, κRg =

∂Bg
∂Te∫ νg+1/2

νg−1/2
dν

1
κt

ν

∂Bν

∂Te

, Bg =
∫

νg+1/2

νg−1/2

dνBν (11)

in which κ t
ν is the spectral total opacity. The right hand side of equation (7) can now be written as (see for instance

Mihalas and Weibel-Mihalas [1984], Pomraming [2005])

∂Eg

∂ t
+ ∇ · (Egu)+(γr−1)Eg∇ ·u− (γr−1)∇ ·u

∫
νg+1/2

νg−1/2

∂ (νEν)

∂ν
dν

= ∇ · (Dg∇Eg)+σg(Bg−Eg), (12)

where Dg = c/(3κRg) is the radiation diffusion coefficient for radiation group g in the diffusion limit. The absorption

and emission uses the coefficient σg = cκPg. These group mean opacities are either supplied by lookup tables or by an

opacity solver.

In a single group approximation (gray diffusion), the spectral energy density is integrated over all photon frequen-

cies and the total radiation energy density is obtained by

Er(r, t) =
∫

∞

0
Eν dν . (13)

This amounts to summing up all groups Er = ∑g Eg. The gray radiation diffusion equation can be derived as (see for

instance Mihalas and Weibel-Mihalas [1984], Pomraming [2005], Drake [2006])

∂Er

∂ t
+∇ · (Eru)+(γr−1)Er∇ ·u = ∇ · (Dr∇Er)+σr(B−Er), (14)
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where the diffusion coefficient Dr in the diffusion limit is now defined by the single group Rosseland mean opacity κR

as Dr = c/(3κR), and the absorption coefficient σr is defined in terms of the single group Planck mean opacity κP as

σr = cκP.

3.1.2 Hydrodynamics

In the CRASH code, a single fluid description is used, so that all of the atomic and ionic species as well as the electrons

move with the same bulk velocity u. The conservation of mass

∂ρ

∂ t
+∇ · (ρu) = 0, (15)

provides the time evolution of the mass density ρ of all the materials in the simulation. The plasma velocity is obtained

from the conservation of momentum
∂ρu
∂ t

+∇ · [ρuu+ I(p+ pr)] = 0. (16)

The total plasma pressure is the sum of the ion and electron pressures: p = pi + pe. The net force of the radiation on

the plasma is given by the gradient of the total radiation pressure −∇pr, where the total radiation pressure is obtained

from the group radiation energies: pr = (γr−1)∑Eg.

In a high density plasma, the electrons are very strongly coupled to the ions by collisions. However, for higher

temperatures, the electrons and ions get increasingly decoupled. At a shock front, where ions are preferentially heated

by the shock wave, the electrons and ions are no longer in temperature equilibrium. Ion energy is transferred to

the electrons by collisions, while the electrons in turn radiate energy. We therefore solve separate equations for the

ion/atomic internal energy density Ei and the electron internal energy density Ee:

∂Ei

∂ t
+ ∇ · (Eiu)+ pi∇ ·u = σie(Te−Ti), (17)

∂Ee

∂ t
+ ∇ · (Eeu)+ pe∇ ·u = ∇ · (Ce∇Te)+σie(Ti−Te)+

G

∑
g=1

σg(Eg−Bg). (18)

The coupling coefficient σie = nakB/τie in the collisional energy exchange between the electrons and ions depends

on the ion-electron relaxation time τie(Te,na,m) and the atomic number density na. Energy transfer depends also on

the difference between ion temperature Ti and electron temperature Te. In equation (18), we have included electron

thermal heat conduction with conductivity Ce(Te,na,m). Since electrons are the species are responsible for radiation

emission and absorption, the energy exchange between the electrons and the radiation groups is added to equation

(18).

For the development of the numerical schemes in Section 3.2, we will use an equation for the conservation of the

total energy density

e =
ρu2

2
+Ei +Ee +

G

∑
g=1

Eg, (19)

instead of the equation for ion internal energy (17). This is especially important in regions of the computational

domain where hydrodynamic shocks can occur, so that we can recover the correct jump conditions. Conservation of

total energy can be derived from equations (12) and (15)–(18) as

∂e
∂ t

+∇ · [(e+ p+ pr)u] = ∇ · (Ce∇Te)+
G

∑
g=1

∇ · (Dg∇Eg) . (20)
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The frequency shift term in equation (12), due to the plasma compression, does not show up in the conservation of

total energy if we use energy conserving boundary conditions at the end points of the frequency domain, i.e. at ν = 0

and ν = ∞ in the analytical description or at the end points of the numerically truncated finite domain.

3.1.3 Level Sets and Material Identification

In many CRASH applications, we need a procedure to distinguish between different materials that may be present.

We assume that materials do not mix, but differ from each other by their properties such as the equation of state and

opacities. If we use M different materials, then we can define for each material m = 1, . . . ,M the level set function

dm(r, t) (see for instance Kreiss and Olsson [2005], Olsson et al. [2007], Sussman and Puckett [2000]) that is initially

set to zero at the material interface, while positive inside the material region and negative outside. Generally, we use a

smooth and signed distance function in the intial state. At later times, the location of material m is obtained by means

of a simple advection equation
∂dm

∂ t
+∇ · (dmu) = dm∇ ·u. (21)

For any given point in space and time, we can determine what the material is, since analytically only one of the level set

functions dm can be positive at any given point. Numerical errors will create regions where this is not true in solutions

to the discretized form of equation (21). Whenever this happens, the material having the largest dm is assigned as the

material in that region. This is a simple approximation, and we may explore more sophisticated approaches in the

future. The number of material levels M is configured at compile time.

3.1.4 Equation of State and Opacities

We have implemented EOS solvers and a code to calculate the frequency-averaged group opacities. This implemen-

tation will be reported elsewhere, but it is important to note that in the EOS and opacity solver, the temperature is

assumed to be well below relativistic values: T � 105 eV. A non-relativistic speed of motion is also assumed, which

simplifies the radiation transport equation and allows neglect of relativistic corrections for opacities. In this section, we

will assume that all necessary quantities are calculated and stored in lookup tables. Our EOS solver assumes that the

corrections associated with ionization, excitation, and Coulomb interactions of partially ionized ion-electron plasma

are all added to the energy of the electron gas and to the electron pressure. This is possible since these corrections

are controlled by the electron temperature. The ion internal energy density, ion pressure, and ion specific heat in an

isochoric process per unit of volume are simply

pi = nakBTi, Ei =
pi

γ−1
, CVi =

(
∂Ei

∂Ti

)
ρ

=
nakB

γ−1
, (22)

which are due to the contributions from ion translational motions, for which γ = 5/3.

The relations among electron internal energy density, pressure, density, and temperature are known as the EOS. To

solve these relations is usually complex and time consuming. We therefore store these relations in invertible lookup

tables. For each material m, our EOS tables have logarithmic lookup arguments (logTe, logna). The list of quantities

stored in these tables is indicated in Table 10. These lookup tables are populated with quantities that are needed for

both single- and two-temperature simulations. For two-temperature plasma simulations, we need pe, Ee, the electron

specific heat CVe, and the electron-speed-of-sound gamma γSe . For convenience, we add the total pressure p = pe + pi,
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quantity stored quantity units
total pressure p p/na eV

total internal energy density E E/na eV

electron pressure pe pe/na eV

electron internal energy density Ee Ee/na eV

specific heat CV CV/(nakB)

electron specific heat CVe CVe/(nakB)

speed of sound gamma γS

electron speed of sound gamma γSe

inverse of ion-electron interaction time 1/τie s−1

electron conductivity Ce J m−1 s−1 K−1

mean ionization Z

mean square ionization Z2

Table 10: Quantities stored in the EOS tables as a function of logTe [eV] and logna
[
m−3

]
total internal energy density E = Ei +Ee, single temperature specific heat CV , and the single-temperature-speed-of-

sound gamma γS, which can be used in single temperature simulations. We use high enough table resolutions so that

it is sufficient to use a bilinear interpolation in the lookup arguments. If pe or Ee (or p and E in single temperature

mode) are known on entry to the lookup instead of Te, we do a binary search in the table to find the appropriate

electron temperature. The latter works only if the necessary thermodynamic derivatives are sign definite, i.e. the table

is invertible. Other thermodynamic quantities that are needed, but not stored in these lookup tables, can be derived.

For example, the electron density can be obtained from the mean ionization ne = naZ.

quantity symbol units
specific group Rosseland mean opacities κRg/ρ kg−1 m2

specific group Planck mean opacities κPg/ρ kg−1 m2

Table 11: Quantities stored in the opacity tables as a function of logρ
[
kg m−3] and logTe [eV].

In addition, we have lookup tables for the averaged multigroup opacities. These tables are either constructed

internally for a given frequency range, number of groups, and selected materials, or externally supplied. For any

material m, the logarithmic lookup arguments are (logρ, logTe). The stored quantities, see Table 11, are the specific

Rosseland mean opacity κRg/ρ and specific Planck mean opacity κPg/ρ for all groups g = 1, . . . ,G used during a

simulation. Planck opacities are assumed to be corrected for stimulated emission, as discussed in Section 3.1.1. The

groups are always assumed to be logarithmically distributed in frequency space.
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3.1.5 Flux-limited Diffusion

Radiation diffusion, if uncorrected, can transport energy too efficiently in the optically thin free streaming limit. In

the diffusion limit, the radiation diffusion flux for each group follows Fick’s law Fg = −Dg∇Eg, where the diffusion

coefficient Dg depends on the Rosseland mean opacity κRg for the group g via Dg = c/(3κRg). However, this flux is

potentially unbounded. In the optically thin free-streaming limit, the magnitude of the radiation flux can be at most

cEg in order to maintain causality. Various flux limiters exist in the literature, see for instance Minerbo [1978], Lund

and J.R. [1980], Levermore and Pomraning [1981], that ensure that the diffusion flux is limited by this free streaming

flux. We have implemented the so-called square-root flux limiter to obtain the correct progation speed in the optically

thin regime [Morel, 2000]. For this flux limiter, the diffusion coefficient is rewritten as

Dg =
c√

(3κRg)2 +
|∇Eg|2

E2
g

. (23)

In the limit that the radiation length scale LR = Eg/|∇Eg| is large, the diffusive limit is recovered. For a small radiation

length scale, Dg = c|Eg|/|∇Eg| and the radiation propagates with the speed of light.

Similarly, we have implemented the option to limit the electron thermal heat flux (see Drake [2006] for more details

on electron flux limiters). The classical Spitzer-Harm formula for the collisional electron conductivity is proportional

to T 5/2
e /Z2, where Z2 is the mean square ionization of the used material. The collisional model is only valid when the

temperature scale length LT = Te/|∇Te| is much larger than the collisional mean free path of the electrons λm f p. When

the temperature scale length is only a few λm f p or smaller, this description breaks down. This may for instance happen

in laser-irradiated plasmas. In such a case, one could determine the heat flux by solving the Fokker-Planck equation for

the electrons, but this is computationally expensive. Instead, we use a simplified model to limit the electron heat flux.

A free-streaming heat flux can be defined as the thermal energy density in the plasma transported at some characteristic

thermal velocity: FFS = nekBTevth, where vth =
√

kBTe/me. For practical applications, the maximum heat transport is

usually only a fraction of this free-streaming flux: F =−( f FFS/|∇Te|)∇Te, where f is the so-called flux limiter. This

heat flux model is the threshold model and is also used in other radiation hydrodynamics packages, such as HYADES

[Larsen and Lane, 1994]. The flux-limited heat flux can now be defined as

F =−min
(

Ce,
f FFS

|∇Te|

)
∇Te. (24)

The flux limiter f is an adjustable input parameter and can be tuned to let the simulated results better fit reality.

3.2 The numerical method

In this section, we describe the discretization of the set of multi-material, radiation-hydrodynamics equations for

the density (15), momentum (16), total energy (20), electron internal energies (18), radiation group energy (12),

and material level-set functions (21). The equations are time integrated using an operator-split method to solve the

equations in substeps. Formally, we may write this system as

∂U
∂ t

= Rhydro(U)+Rfrequency(U)+Rdiffusion(U), (25)

where U is the vector of state variables. We have split the right hand sides of the equations into three parts and

time advance the equations with an operator splitting method in the following order: (1) The right hand side Rhydro
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describes the advection and pressure contributions (Section 3.2.1). This part is essentially the ideal hydrodynamic

equations augmented with the advection and compression of the radiation energy, the electron internal energy, and

the material level sets. (2) The right hand side Rfrequency is the advection of the radiation field in frequency space

(Section 3.2.2). (3) The right hand side Rdiffusion takes care of the diffusion and energy exchange terms, which we

will solve with an implicit scheme (Section 3.2.3). This choice of operator splitting is not unique. Instead of splitting

the hydrodynamic advection operator and the extra advance operator for the frequency advection, one could attempt

to discretize the frequency advection flux as an extra flux for the control volume of the four-dimensional (x,y,z,ν)

space. However, since the CRASH code is built around the existing BATS-R-US code in 1D, 2D, and 3D, we opted

for splitting the frequency advection from the hydro update. Boundary conditions are treated in Section 3.2.4.

3.2.1 Hydro Solve

The first step of the operator splitting is an update of the hydrodynamic equations, including the advection and com-

pression of the radiation energy density, electron internal energy density and the level sets. We have implemented

two variants to solve the hydrodynamic equations: (1) using conservation of the total energy (Section 3.2.1.1) and (2)

a non-conservative pressure formulation (Section 3.2.1.2). We can also combine the two discretizations in a hybrid

manner within a multi-material simulation [Karni, 1996].

3.2.1.1 Conservative Approach

We have implemented several hydrodynamic shock-capturing schemes in the CRASH code: the HLLE scheme [Harten

et al., 1983, Einfeldt et al., 1991], the Rusanov scheme [Yee, 1989], and a Godunov scheme [Godunov, 1959] with

an exact Riemann solver. In this section, we will explain how we generalized the HLLE scheme for our system of

equations that includes radiation, level sets, and an EOS. The other hydrodynamic schemes can be generalized in a

similar fashion.

Typical hydrodynamic solvers in the literature assume constant γ . Our problem is to generalize the constant

γ hydro solvers for the case of a spatially varying polytropic index, γe, which varies due to ionization, excitation

and Coulomb interactions. A method that is applicable to all the aforementioned, constant-γ , hydrodynamic shock-

capturing schemes is one of splitting the electron internal energy Ee density into the sum of an ideal (translational)

energy part pe/(γ−1) and an extra internal energy density EX . Similarly, we can define an ideal total energy density

eI =
ρu2

2
+

pi + pe

γ−1
+

G

∑
g=1

Eg, (26)

which is related to the total energy density by e = eI +EX . We time advance pe with the ideal electron pressure

equation and EX by a conservative advection equation, and then apply a correction step as described below.
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The time update with the operator Rhydro solves the following equations:

∂ρ

∂ t
+ ∇ · (ρu) = 0, (27)

∂ρu
∂ t

+ ∇ · [ρuu+ I(p+ pr)] = 0, (28)

∂eI

∂ t
+ ∇ · [(eI + p+ pr)u] = 0, (29)

1
γ−1

∂ pe

∂ t
+

1
γ−1

∇ · (peu)+ pe∇ ·u = 0, (30)

∂EX

∂ t
+ ∇ · [EX u] = 0, (31)

∂Eg

∂ t
+ ∇ · (Egu)+(γr−1)Eg∇ ·u = 0, (32)

∂dm

∂ t
+ ∇ · (dmu)−dm∇ ·u = 0, (33)

where the frequency advection, diffusion, and energy exchange terms are omitted in this first operator step. After each

time advance from time tn to time tn+1, we have to correct e, eI , pe, and EX . We denote the uncorrected variables with

a superscript ∗, then we recover at time level n+ 1 the true electron internal energy En+1
e and the true total energy

density en+1 by

En+1
e =

p∗e
γ−1

+E∗X , (34)

en+1 = e∗I +E∗X . (35)

Since both eI and EX follow a conservation law, the total energy density e is also conserved. The true electron pressure

is recovered from the updated electron internal energy and mass density by means of the EOS:

pn+1
e = pEOS(ρ

n+1,En+1
e ,m), (36)

where the function pEOS can be either a calculated EOS or an EOS lookup table for material m, determined by the level

set functions dn+1
m (Section 3.1.3). The extra internal energy EX is reset as the difference between the true electron

internal energy and the ideal electron internal energy for γ = 5/3:

En+1
X = En+1

e − pn+1
e

γ−1
. (37)

This is positive because the EOS state pEOS satisfies Ee− pe/(γ−1)≥ 0 at all times. The ideal part of the total energy

density at time level n+1 can now be updated as

en+1
I = en+1−En+1

X . (38)

We have now recovered en+1, eI
n+1, pn+1

e , and En+1
X at time tn+1.

We time advance the hydrodynamic equations to the time level ∗ with a shock-capturing scheme with a constant

γ = 5/3. For an ideal EOS, the speed of sound of the equations (27)–(32) can be derived as

cs =

√
γ(pi + pe)+ γr pr

ρ
, (39)
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which includes modifications due to the presence of the total radiation pressure. This speed of sound will be used in

the hydro scheme below. Since the CRASH EOS solver always satisfies EX ≥ 0 and γe ≤ 5/3, the speed of sound for

the ideal EOS is always an upper bound for the true speed of sound.

We use shock-capturing schemes to advance the equations (27)–(33). In the following, we denote the (near)

conservative variables by U = (ρ,ρu,eI , pe,EX ,Eg,dm) and let U be grid cell averages in the standard finite volume

sense. If we assume for the moment a 1D grid with spacing ∆x, cell center index i and cell face between cell i and

i+1 identified by half indices i+1/2, then we can write the two-stage Runge-Kutta hydro update as

Un+1/2
i = Un

i −
∆t

2∆x

(
f n
i+1/2− f n

i−1/2

)
, (40)

Un+1
i = Un

i −
∆t
∆x

(
f n+1/2
i+1/2 − f n+1/2

i−1/2

)
. (41)

where f is the numerical flux. In particular, the HLLE flux f equals the physical flux F(UR
i+1/2) when c+s = ui+cs ≤ 0,

F(UL
i+1/2) when c−s = ui− cs ≥ 0, and in all other cases it uses the weighted flux

fi+1/2 =
c+s F(UL

i+1/2)− c−s F(UR
i+1/2)+ c+s c−s (U

R
i+1/2−UL

i+1/2)

c+s − c−s
. (42)

Here, the left and right cell face states are

UL
i+1/2 = Ui +

1
2

∆̄
LUi, (43)

UR
i+1/2 = Ui+1−

1
2

∆̄
RUi+1. (44)

We use the generalized Koren limiter, and define the limited slopes as

∆̄
LUi = minmod

[
β (Ui+1−Ui),β (Ui−Ui−1),

2Ui+1−Ui−Ui−1

3

]
, (45)

∆̄
RUi = minmod

[
β (Ui+1−Ui),β (Ui−Ui−1),

Ui+1−Ui−2Ui−1

3

]
, (46)

for the extrapolations from the left and right. This reconstruction can be third order in smooth regions away from

extrema [Koren, 1993, Tóth et al., 2008]. The parameter β can be changed between 1 and 2, but in simulations

with adaptive mesh refinement we have best experience with β = 3/2. We generally apply the slope limiters on the

primitive variables (ρ,u, pi, pe,EX/ρ,Eg,dm), instead of the conservative variables. We apply the slope limiter on

EX/ρ , instead of EX , since EX/ρ is smoother at shocks and across material interfaces. A multi-dimensional update is

obtained by adding the fluxes for each direction in a dimensionally unsplit manner.

After each stage of the two step Runge-Kutta, we correct for the EOS effects via the update procedure outlined in

equations (34)–(38).

3.2.1.2 Non-Conservative Pressure Equations

In regions away from shocks, it is sometimes more important to preserve pressure balance than to have a shock

capturing scheme that recovers the correct jump conditions. This is especially important at material interfaces. We

therefore have implemented the option to solve the hydro part of the pressure equations

∂ pi

∂ t
+ ∇ · (piu)+(γ−1)pi∇ ·u = 0, (47)

∂ pe

∂ t
+ ∇ · (peu)+(γSe−1)pe∇ ·u = 0, (48)
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instead of the equations for the total energy (29) and the electron internal energy (30). As long as the speed-of-sound

gamma for the electrons

γSe =
ρ

pe

(
∂ pe

∂ρ

)
Se

(49)

is smaller than γ = 5/3, the numerical scheme is stable. Contrary to the energy conserving scheme, the pressure-based

scheme can directly include the EOS and we no longer need the time evolution of the extra internal energy density

(31). The EOS contribution in the electron-pressure equation (48) is implemented as a source term −(γSe− γ)pe∇ ·u
added to the ideal electron pressure equation.

To facilitate using both the shock capturing properties and the pressure balance at the material interfaces during

CRASH simulations, we have several criteria to switch between them automatically. One of the criteria, for instance,

uses a detection of steep pressure gradients as a shock identification. The user can select the magnitude of the pressure

gradient above which the scheme switches to the conservative energy equations.

3.2.2 Frequency Advection

The set of multigroup equations (12) contains an integral over the group photon frequencies. Performing this integra-

tion, the frequency advection update by the Rfrequency operator can be written as

∂Eg

∂ t
− (γr−1)(∇ ·u)

[
νg+1/2Eν(νg+1/2)−νg−1/2Eν(νg−1/2)

]
= 0. (50)

These equations, however, still depend on the, as yet, unassigned photon group frequencies νg and the spectral radiation

energy density Eν . We will now restrict the analysis to a frequency grid that is uniformly spaced in the frequency

logarithm, i.e.,

ln(νg+1/2)− ln(νg−1/2) = ∆(lnν) = constant. (51)

For a large enough number of frequency groups G, the group energy Eg can then be approximated as the product of

the photon frequency, spectral radiation energy Eν , and the logarithmic group spacing ∆(lnν):

Eg =
∫

νg+1/2

νg−1/2

Eν dν =
∫ lnνg+1/2

lnνg−1/2

Eν νd(lnν)≈ Eν ν∆(lnν). (52)

Using this approximation in equation (50), we obtain our final form of the frequency advection

∂Eg

∂ t
+uν

Eg+1/2−Eg−1/2

∆(lnν)
= 0, (53)

where uν =−(γr−1)∇ ·u is the frequency advection speed. The values Eg±1/2 are to be interpolated from the mesh-

centered values Eg towards the group boundaries.

The frequency advection is a conservative linear advection in the log-frequency coordinate, for which the physical

flux is defined as Fg−1/2 = uν Eg−1/2. For the boundary conditions in the frequency domain we assume zero radiation

flux so that no radiation can leak at the edges of the frequency domain. Equation (53) can be discretized with the

one-stage second order upwind scheme

En+1
g = E∗g −∆t

fg+1/2− fg−1/2

∆(lnν)
, (54)
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where time level ∗ is now the state after the hydro update and the numerical flux is

fg−1/2 = uν

[
Eg−

1−C
2

∆̄(Eg+1−Eg,Eg−Eg−1)

]
, uν ≤ 0,

fg−1/2 = uν

[
Eg−1 +

1−C
2

∆̄(Eg−Eg−1,Eg−1−Eg−2)

]
, uν ≥ 0. (55)

and we use the superbee limiter [Roe, 1986] for the limited slope ∆̄. The Courant-Friedrichs-Lewy number C =

|uν |∆t/∆(lnν) depends on the hydrodynamic time-step ∆t. If C is larger than one, the frequency advection is sub-

cycled with the number of steps equal to the smallest integer value larger than C.

3.2.3 Implicit Diffusion and Energy Exchange

The stiff parts of the radhyro equations are solved implicitly in an operator split fashion. These stiff parts are the radia-

tion energy diffusion, electron heat conduction, and the energy exchange between the electrons and each energy group

g and between the electrons and ions. In this section, we will describe two implicit schemes that are implemented: (1)

solving all radiation groups, together with electron and ion temperatures in a coupled manner (Section 3.2.3.1), and

(2) solving each radiation group energy and the electron temperature independently (Section 3.2.3.2). Our strategy for

resolution changes is described in section 3.2.6, while the modifications for the rz-geometry are explained in section

3.2.5.

3.2.3.1 Coupled Implicit Scheme

Discretizing the diffusion and energy exchange terms of equations (17)–(18), and (12) implicitly in time leads to

En+1
i −E∗i

∆t
= σ

∗
ie(T

n+1
e −T n+1

i ), (56)

En+1
e −E∗e

∆t
= σ

∗
ie(T

n+1
i −T n+1

e )+∇ ·C∗e ∇T n+1
e +

G

∑
g=1

σ
∗
g (E

n+1
g −Bn+1

g ), (57)

En+1
g −E∗g

∆t
= σ

∗
g (B

n+1
g −En+1

g )+∇ ·D∗g∇En+1
g , (58)

where time level ∗ now corresponds to the state after the hydro update and the frequency advection. The coupling

coefficients σ∗ie and σ∗g and the diffusion coefficients C∗e and D∗g are taken at time level ∗ (frozen coefficients). One

can either (1) solve the coupled system of G+ 2 equations (56)–(58) implicitly or (2) solve equation (56) for the

ion internal energy En+1
i , substitute the solution back into equation (57), and solve the resulting reduced set of G+1

equations (57)–(58) implicitly. Here we describe the second scheme, because it is more efficient, especially for a small

number of groups, e.g., for gray radiation diffusion. Note that if we had included ion heat conduction in (58), then we

would have to solve the entire coupled system of equations.

First, we introduce the ion Planck function Bi = aT 4
i as a new variable similar to the electron Planck function

B = aT 4
e , and replace Ei and Ee with these variables using the chain rule

∂Ei

∂ t
=

∂Ei

∂Ti

∂Ti

∂Bi

∂Bi

∂ t
=

CVi

4aT 3
i

∂Bi

∂ t
,

∂Ee

∂ t
=

CVe

4aT 3
e

∂B
∂ t

, (59)
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where CVi and CVe are the specific heats of the ions and electrons, respectively. Now equation (56) can be replaced

with

Bn+1
i = B∗i +∆tσ ′ie(B

n+1−Bn+1
i ), (60)

where

σ
′
ie = σ

∗
ie

4aT 3
i

CVi

1
a(Te +Ti)(T 2

e +T 2
i )

, (61)

is again taken at time level ∗. The numerator comes from (T 4
e −T 4

i )/(Te−Ti). Equation (60) can be solved for Bn+1
i .

This result can be substituted into the electron internal energy equation (57) to obtain

C′Ve
∆t

(Bn+1−B∗) = σ
′′
ie(B

∗
i −Bn+1)+∇ ·C′e∇Bn+1 +

G

∑
g=1

σ
∗
g (E

n+1
g −w∗gBn+1), (62)

where we have introduced new coefficients at time level ∗:

σ
′′
ie =

CVi

4aT 3
i

σ ′ie
1+∆tσ ′ie

, C′e =
C∗e

4aT 3
e
, C′Ve =

C∗Ve
4aT 3

e
. (63)

The Planck weights w∗g = B∗g/B∗ satisfy ∑g wg = 1. It is convenient to introduce the changes ∆B = Bn+1−B∗ and

∆Eg = En+1
g −E∗g to arrive at[

C′Ve
∆t

+σ
′′
ie−∇ ·C′e∇

]
∆B −

G

∑
g=1

σ
∗
g (∆Eg−w∗g∆B) = σ

′′
ie(B

∗
i −B∗)

+ ∇ ·C′e∇B∗+
G

∑
g=1

σ
∗
g (E

∗
g −w∗gB∗), (64)[

1
∆t
−∇ ·D∗g∇

]
∆Eg − σ

∗
g (w

∗
g∆B−∆Eg) = σ

∗
g (w

∗
gB∗−E∗g )+∇ ·D∗g∇E∗g . (65)

This is a coupled system of G+1 linearized equations for the changes ∆B and ∆Eg. The right hand sides are all at time

level *.

A discrete set of equations is obtained by applying the standard finite volume method to the equations (64) and (65)

and partitioning the domain in a set of control volumes Vi, enumerated by a single index i = 1, . . . , I. As an example,

the fluxes Fgi j associated with the radiation diffusion operator may be obtained by approximating the gradient of the

group energy density with a simple central difference in the uniform part of the mesh:

−
∫

Vi

∇ · (Dg∇Eg)dV = ∑
j

Fgi j = ∑
j

Si jDgi j
Egi−Eg j

|xi−x j|
, (66)

where the index j enumerates the control volumes which have a common face with the control volume i, the face

area being Si j, and the distance between cell centers is |xi− x j|. Note that we assumed here an orthogonal mesh.

Generalization to curvilinear grids can be done as shown in Tóth et al. [2008]. The diffusion coefficients at a face are

obtained by simple averaging of the cell centered diffusion coefficient: Dgi j = (Dgi +Dg j)/2. The discretization of

the diffusion operator at resolution changes is described in section 3.2.6.

The linear system (64)–(65) can be written in a more compact form as the linearized implicit backward Euler

scheme (
I−∆t

∂R
∂U

)
∆U = ∆tR(U∗), (67)
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where U are the I× (G+1) state variables B and Eg for all I control volumes, and ∆U = Un+1−U∗. R is defined by

the spatially discretized version of the right hand side of equations (64) and (65). The matrix A = I−∆t∂R/∂U is

a I× I block matrix consisting of (G+1)× (G+1) sub-matrices. This matrix A is in general non-symmetric due to

the Planck weight w∗g in the energy exchange between the radiation and electrons. To solve this system we use Krylov

sub-space type iterative solvers, like GMRES [Saad and Schultz, 1986] or Bi-CGSTAB [Van der Vorst, 1992]. To

accelerate the convergence of the iterative scheme, we use a preconditioner. In the current implementation of CRASH,

we use the Block Incomplete Lower-Upper decomposition (BILU) preconditioner, which is applied for each adaptive

mesh refinement block independently. For gray radiation diffusion the Planck weight is one, and the matrix A can be

proven to be symmetric positive definite (SPD) for commonly used boundary conditions (see for example Edwards

[1996b]). In that case, we can use a preconditioned conjugate gradient (PCG) scheme (see for instance Eisenstat

[1981]).

For some verification tests, we can attempt to go second order in time under the assumption of temporally constant

coefficients using the Crank-Nicolson scheme

Un+1−U∗

∆t
= (1−α)R(U∗)+αR(Un+1), (68)

with α = 1/2. The implicit residual can again be linearized R(Un+1) = R(U∗)+ (∂R/∂U)∗∆U to obtain the linear

system of equations (
I−α∆t

∂R
∂U

)
∆U = ∆tR(U∗). (69)

We use the same iterative solvers as for the backward Euler scheme.

Finally, we show how we use the solution ∆B and ∆Eg for g = 1, . . . ,G from the non-conservative equations (64)

and (65) to advance the solution of the original equations (56)–(58) and still conserve the total energy. One needs

to express the fluxes and energies on the right hand side in the latter equations in terms of Bn+1 and En+1
g while still

keeping the coefficients frozen. After some algebra we obtain

En+1
i = E∗i +∆tσ ′′ie(B

n+1−B∗i ), (70)

En+1
e = E∗e +C′Ve(B

n+1−B∗), (71)

En+1
g = E∗g +∆Eg. (72)

This update conserves the total energy to round-off error. Note that at this final stage, taking too large time step may

result in negative ion internal energy En+1
i if Bn+1� B∗i and negative electron internal energy En+1

e if Bn+1� B∗. If

this happens, the advance might be redone with a smaller time step, to limit the drop in B, or by some other timestep

control scheme. A generalization of the conservative update to the Crank-Nicolson scheme is also implemented for

verification tests with time constant coefficients.

For completeness, we mention that in the absence of radiation we solve during the implicit step for the temperatures

Te and Ti instead of the radiation energy-like variables aT 4
e and aT 4

i . In that case the corresponding matrix A is always

SPD. In principle, the formulation in temperatures can be generalized to radiation as well. In Landau and Lifshitz

[1980], a spectral temperature Tν(Eν ,ν) is defined, such that the spectral energy density is locally equal to the spectral

Planckian energy density at the temperature Tν : Eν = Bν(Tν ,ν). This relationship is a one-to-one map. A group

temperature, Tg, can also be introduced as the discrete analog such that the group energy density can be obtained by

Eg(Tg) =
∫

νg+1/2

νg−1/2

Bν(Tg,ν)dν . (73)
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The equation (58) can be recast as equation for the group temperature Tg. This introduces the group specific heat of

the radiation Cg = dEg/dTg. The set of equations (56)–(58) reformulated as an implicit backward Euler scheme for

the temperatures Ti, Te, and Tg can in a similar way as in Edwards [1996b] be proven to be SPD. While this scheme

has the advantage of being SPD, the conservative update of the group energy density En+1
g = E∗g +C∗g∆Tg might result

in negative energy density En+1
g for time steps that are too large.

3.2.3.2 Decoupled Implicit Scheme

The coupled implicit scheme of Section 3.2.3.1 requires solution of a large system of equations (G+ 1 variables per

mesh cell). The preconditioning of such a system can be computationally expensive and requires overall a lot of

memory. We therefore also implemented a decoupled implicit scheme that solves each equation independently.

For some applications, the electron temperature does not change much in exchanging energy with the radiation.

This is typically so if the electrons have a much larger energy density than the radiation, so that Te changes little due

to interaction with the radiation in a single time step. In that case, we first solve for the electron and ion temperatures

without the contributions from the radiation-electron energy exchange. Let again time level ∗ indicate the state after

the hydro update and frequency advection, and again freeze C∗e , D∗g, σ∗ie, σ∗g at time level ∗. Discretization in time now

leads to

En+1
i −E∗i

∆t
= σ

∗
ie(T

∗∗
e −T n+1

i ), (74)

E∗∗e −E∗e
∆t

= σ
∗
ie(T

n+1
i −T ∗∗e )+∇ ·C∗e ∇T ∗∗e , (75)

where the time level ∗∗ of Ee indicates that we still have to do an extra update to time level n+1 with the radiation-

electron energy exchange. Each radiation group energy density is solved independently using time level ∗ for the

electron temperature in B∗g:
En+1

g −E∗g
∆t

= σ
∗
g (B

∗
g−En+1

g )+∇ ·D∗g∇En+1
g , (76)

where we have exploited the assumption that B∗g is not stiff.

Equations (74)–(76) can be recast in equations for the G+ 1 independent changes ∆B = B∗∗ −B∗ and ∆Eg =

En+1
g −E∗g : [

C′Ve
∆t

+σ
′′
ie−∇ ·C′e∇

]
∆B = σ

′′
ie(B

∗
i −B∗)+∇ ·C′e∇B∗, (77)[

1
∆t

+σ
∗
g −∇ ·D∗g∇

]
∆Eg = σ

∗
g (w

∗
gB∗−E∗g )+∇ ·D∗g∇E∗g . (78)

where we have used the definitions (59), (61), and (63) of the coefficients, frozen at time level ∗. Each equation for the

changes is in the form of the linearized implicit backward Euler scheme (67) and can be solved independently with

iterative solvers like GMRES and Bi-CGSTAB using a BILU preconditioner. As long as the boundary conditions are

such that the matrices are symmetric and positive definite, a preconditioned conjugate gradient method might also be

used.

In a manner similar to the coupled implicit scheme, a conservative update for the energy densities can be derived
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as

En+1
g = E∗g +∆Eg, (79)

En+1
i = E∗i +∆tσ ′′ie(B

∗∗−B∗i ), (80)

En+1
e = E∗e +C′Ve(B

∗∗−B∗)+∆t
G

∑
g=1

σ
∗
g (E

n+1
g −w∗gB∗), (81)

which preserves the total energy to round-off errors. The main difference between the conservative update in the cou-

pled and decoupled schemes is that here the energy exchange between the radiation and electrons is added afterwards

as the last term in equation (81).

This scheme requires less computational time for preconditioning and for the Krylov solver than the coupled

implicit algorithm. However it generally needs more message passing in parallel computations. It is therefore not

always guaranteed that the decoupled scheme is faster. The memory usage is always smaller.

3.2.4 Boundary Conditions

The CRASH code allows for any user specified type of boundary conditions. Several commonly used boundary

conditions are readily available in the main code for convenience, e.g., fixed, extrapolation with zero gradient, periodic,

and reflective.

For the radiation field, we have implemented a zero or fixed incoming flux boundary condition that is used instead

of the extrapolation with zero gradient. This type of boundary condition is useful if there are no sources of radiation

outside the computational domain and we assume that outflowing radiation does not return back into the computational

domain (zero albedo). Note that simple extrapolation with zero gradient can make the radiation diffusion problem

ill-posed. The boundary condition is derived as follows: Radiation diffusion approximation corresponds to a linear-

in-angle intensity distribution

Ig =
c

4π
Eg +

3
4π

Fg ·n, (82)

so we can calculate the radiation flux through a boundary surface. If we define the outward pointing normal vector of

the boundary as nb, the net flux of radiation energy inward through this boundary is

F in
g =−

∫
n·nb<0

nb ·nIgdΩ =
cEg

4
− 1

2
nb ·Fg, (83)

where the closure (82) is used. In the radiation diffusion model, the flux is written as Fg = −Dg∇Eg, where the

diffusion coefficient Dg is a nonlinear function of Eg and ∇Eg in a flux limited diffusion model. The boundary

condition satisfies

Eg +
2Dg

c
nb ·∇Eg =

4
c

F in
g . (84)

For the left boundary in the x-direction, for instance, this can be discretized as

Eg0 +Eg1

2
−

2Dg

c
Eg1−Eg0

∆x
=

4
c

F in
g , (85)

where the index 1 corresponds to the last physical cell and 0 to the ghost cell. This equation can be solved for the

ghost cell value. For zero incoming radiation flux boundary conditions we set F in
g = 0.
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Figure 23: Cell and face centers at the adaptive interface in 2D.

3.2.5 R-Z-Geometry

Incorporating rz-geometry in a finite volume formulation is as follows: the radial cell face area and the cell volume

must be made proportional to the distance r from the symmetry axis. In addition, the r component of the momentum

equation (16) is modified as
∂ρur

∂ t
+∇ · [ρuur + r̂(p+ pr)] =

p+ pr

r
, (86)

where r̂ is the unit vector in the r direction and ur = u · r̂. This correction reflects that the pressure term is a gradient,

not a divergence.

3.2.6 Discretization of the diffusion operator at resolution changes

In Sections 3.2.3.1 and 3.2.3.2, the diffusion operator is discretized on a uniform mesh with a standard finite volume

method in combination with a central difference approximation for the gradient in the flux calculation as in equation

(66). The diffusion coefficient needed at the face is obtained by simple arithmetic averaging of the left and right cell

center diffusion coefficients. The generalization to resolution changes as in Figure 23 is less straightforward. In the

following, we denote the fine cell centers by a and b, the coarse cell center by c. The flux densities at resolution

changes in the direction orthogonal to the interface are denoted by F1 and F2 at the fine faces, and F3 at the coarse face.

In Edwards [1996b], a strategy was developed to discretize the diffusion operator on an adaptive mesh in the

context of reservoir simulations. The main ingredients of the method are (1) require the continuity of the flux at the

resolution change in the strong sense, i.e. F1 = F2 = F3, and (2) discretize the gradient in the diffusion flux by a

one-sided difference. An expression was found for the diffusion flux F =−D∇E in which the diffusion coefficient is

replaced by a weighted harmonic average of the cell centered values Da, Db, Dc. In Gittings [2008], it was argued that

this discretization does not properly propagate the self-similar Marshak waves of the radiation diffusion model, unless

the cell centered diffusion coefficients are calculated on a common face temperature.

In the version of the code discussed here, we follow a different approach that replaces the harmonic average of

the diffusion coefficient in Edwards [1996b] by an arithmetic average and obtain for the flux densities normal to the

resolution change interface

F1 = F2 = F3 =−
2D
3∆x

[Ec− (Ea +Eb)/2] , (87)

53



where ∆x is the fine cell size and the diffusion coefficient at the face is averaged as

D3 = [Dc +(Da +Db)]/3. (88)

We have demonstrated with verification tests including those discussed above that this change produces properly

propagating radiative precursor and shock fronts. Generalizations to 1D and 3D are straightforward.

3.2.6.1 Improved diffusion operator at resolution changes

In this section we present an improved conservative and spatially second-order implicit scheme for the radiation dif-

fusion and heat conduction. For convenience, we only derive this scheme for the heat conduction. The generalization

for radiation diffusion is straightforward.

Discretizing the electron thermal heat conduction implicitly in time leads to the linearized backward Euler equation

for the electron temperature T

C∗Ve
T n+1−T ∗

∆t
= ∇ ·C∗e ∇T n+1, (89)

where CVe is the electron specific heat and Ce is the heat conduction coeffcient. The time level ∗ corresponds to the

state before the implicit update. During the implicit advance with time step ∆t, the coefficients are frozen in at time

level ∗, resulting in a temporally first order scheme in general. This equation can be recast in a linearized equation for

the change ∆T = T n+1−T ∗: [
C∗Ve
∆t
−∇ ·C∗e ∇

]
∆T = ∇ ·C∗e ∇T ∗. (90)

The right-hand-side depends only on time level ∗. Once Eq. 90 is solved using a linear solver, the electron energy

density can be updated using

En+1
e = E∗e +C∗Ve(T

n+1−T ∗), (91)

to conserve the energy.

A discrete set of equations is obtained by applying a finite volume method to Eq. 90. To make this scheme spatially

second-order accurate on a uniform mesh, we need a second order accurate thermal heat flux at the face centers. This

is achieved by approximating the gradient of the electron temperature with a central difference using the cell-centered

values

−
∫

Vi

∇ · (Ce∇T )dV = ∑
j

Si jCei j
Ti−Tj

|xi−x j|
, (92)

where the control volumes are indexed by i, each having a volume Vi. The index j is for the neighboring cells having

a common interface with area Si j and a distance between the cell centers is |xi−x j|. The heat conduction coefficient

at the face is the arithmetic average of the coefficient at the two neighboring cell centers, Cei j = (Cei +Ce j)/2.

To obtain a second-order heat flux at the resolution change, we need a third-order interpolation of the temperature

in the ghost cells. Such an interpolation was previously used in the context of Hall magnetohydrodynamics (MHD)

[Tóth et al., 2008]. This interpolation is only needed for the fine cells, since the flux at the coarse side will be obtained

as the sum of the fluxes at the neighboring fine cells to preserve conservation of the scheme [Berger and Colella,

1989]. The implementation for the heat conduction is different from the Hall MHD, since for the heat conduction we

also have to maintain positivity of the temperature and avoid spurious oscillations. For convenience we will restrict

the analysis to two-dimensional domains. The third-order interpolation for the temperature value at the fine ghost cell
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(0, j), indicated by the dashed circle, is first performed along the coarse cell values in the transverse direction to obtain

the temperature at (−1/2, j) as depicted in Fig. 24:

T−1/2, j =
5T−1/2, j−3/2 +30T−1/2, j+1/2−3T−1/2, j+5/2

32
. (93)

To guarantee the positivity of the interpolated temperature, the value is clipped by the maximum and minimum values

of the surrounding points

T−1/2, j = max{min[T−1/2, j, max(T−1/2, j−3/2,T−1/2, j+1/2)], (94)

min(T−1/2, j−3/2,T−1/2, j+1/2)}. (95)

The value in the fine ghost cell can now be obtained by a parabolic interpolation along the fine cells in the direction

normal to the refinement interface

T0, j =
8T−1/2, j +10T1, j−3T2, j

15
. (96)

For this interpolation we need again to clip the obtained value with the surrounding temperatures

T0, j = max{min[T0, j,max(T−1/2, j,T1, j)],min(T−1/2, j,T1, j)}. (97)

This ghost cell value is used in the heat conduction formula 92. We still need a second order accurate heat conduction

coefficient Cei j at the fine face center. This amounts to a second-order prolongation of the heat conduction coefficient

to obtain the ghost-cell values at the fine side, followed by an averaging of the cell centered coefficients to the face

center. Once the thermal heat fluxes at the fine side are obtained, copying the fine fluxes to the coarse side at the

resolution changes restores conservation. Note that this scheme is different from Edwards [1996b] where conservation

of the flux at the resolution changes is enforced in the strong sense by enforcing the flux on the coarse side to be equal

to each of the fluxes on the fine side.

In the analysis we assumed a Cartesian mesh. Generalization to curvilinear grids is presented in Tóth et al. [2008].

The same third-order interpolation procedure with clipping is also used for heat conduction along the magnetic field

lines in the context of solar wind modeling [van der Holst et al., 2010].

We verified the improved implicit heat conduction and radiation solver with the tests described in van der Holst

et al. [2011] and find that the solver converges to the analytical solutions and does not under- or over-shoot near

discontinuities.

3.3 Parallel Performance of the Baseline CRASH code

We present parallel scaling studies on the Pleiades supercomputer at NASA Ames. This computer is an SGI ICE

cluster connected with InfiniBand. Figure 25 shows strong scaling for a problem size that is independent of the

number of processors. This 3D simulation is a circular tube version of the full system test described in Section 4.1.4.

It uses five materials, 30 radiation groups, and separate electron and ion temperatures. The grid contains 80× 8× 8

blocks of 4× 4× 4 cells each at the base level and in addition two time-dependent refinement levels. There are

overall approximately 2.6 million cells in this problem. We use lookup tables for the EOS and opacities, so that the

computational time for that is negligible. For the hydrodynamic equations, we use the HLLE scheme together with the

generalized Koren limiter with β = 3/2. The radiation diffusion, electron heat conduction and energy exchange terms
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Figure 24: The coefficients of the third-order interpolation near the resolution changes (similar to Tóth et al. [2008]).

The order of the interpolation is first along the coarse grid cells tangential to the resolution change, followed by an

interpolation along the fine cells to obtain a third-order temperature value in the fine ghost cell indicated by the dashed

circle.
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Figure 25: Strong scaling of the CRASH code, running a 3D CRASH application with 5 material level sets, electron

and ion temperature, 30 radiation groups, and two levels of time dependent mesh refinement.
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are solved implicitly with the decoupled scheme, using the Bi-CGSTAB iterative solver. This simulation is performed

for 20 time steps for the number of cores varying from 128 to 2048, but excludes file I/O to measure the performance

of the implicit solver. Up to 1024 cores, we get good scaling. However, for more cores we observe saturation in the

performance.

3.4 Simulating radiative shocks in nozzle shock tubes using the baseline CRASH code

Before we developed our own laser package to model the laser-plasma physics and laser energy deposition in the

radiative shock tube experiments, we used H2D, the 2D version of the Hyades code [Larsen and Lane, 1994], which

contains a built-in laser package. H2D is a Lagrangian radiation-hydrodynamics code that utilizes the axisymmetry.

Hyades is capable of tracing rays in 3D; the runs shown below used 2D ray tracing for the laser energy deposition.

We used the H2D code to simulate our experiments for the first 1.1ns (sometimes up to 1.3ns), the time of the full

width half maximum (FWHM) 1ns laser pulse including ramp-up and ramp-down time. The spatial profile of the

beam is determined using a model for the irradiance pattern of the laser beams in typical experiments. At 1.1ns the

experiment is in a regime that is well described by radiation-hydrodynamics so that the simulation can be continued

with the CRASH code [van der Holst et al., 2011].

Section 3.4.1 describes the radiative shocks produced in nozzles with circular cross-section. We contrast the results

with order-of-magnitude estimates based on physical arguments. Section 3.4.2 demonstrates the radiative shocks in

nozzles with an elliptical neck. This simulation is fully three-dimensional.

3.4.1 Circular nozzle

A laser pulse irradiates a 20 µm thick beryllium disk with 0.35 µm wavelength light with a FWHM duration of 1ns and

with a laser energy deposition of 4kJ. For the laser spot size we use a FWHM 800 µm diameter which is smaller than

the 1200 µm diameter of the tube. Tthe runs reported here use the Lagrangian radiation-hydrodynamics code Hyades

2D (H2D) [Larsen and Lane, 1994] to evaluate the laser energy deposition during the first 1.1ns which includes the

laser ramp-up and ramp-down time. While our aim is to simulate radiative shocks in nozzles, the first 1.1ns is however

simulated in a straight tube for convenience. Calculating the first 1.1ns with a straight tube and then transforming this

tube into a nozzle is physically justified as long as the taper and shaft of the nozzle only alters the radiative precursor.

The justification originates from the observation that the radiative transport from the precursor back through the shock

front is negligible [Drake et al., 2011]. The straight tube does have a cylindrical polyimide wall of 100 µm thickness

and inner radius of 600 µm filled with xenon with mass density ρ = 0.0065g/cm3, while there is vacuum outside. The

beryllium disk is immediately to the left of x = 0, where x is the coordinate along the tube. The laser light will come

in from the negative x direction. We place a gold washer next to the beryllium disk to protect the outside of the plastic

tube from the laser light and use acrylic in between the gold and polyimide tube.

After 1.1ns of simulation time the output of H2D is used to initialize the Eulerian CRASH code as described in

Sec. 3.5.3. The straight tube of H2D is transformed into a nozzle, see the left panel of Fig. 26 for one quarter of

the nozzle domain. This nozzle changes cross-section in the following way. For x < 500 µm we do not modify the

tube as defined in H2D. For x > 750 µm we shrink the tube diameter from 1200 µm to 600 µm and the polyimide

wall thickness correspondingly reduces to 50 µm. Between 500 µm and 750 µm the tube diameter and wall decrease

linearly (In the notation of Sec. 3.5.3 we use x0 = 500 µm, x1 = 750 µm, εy = 1/2 and εz = 1/2). The vacuum outside
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Figure 26: The materials in the 3D circular nozzle experiment at 1.1ns (left panel) and 13ns (right panels). Only

one quarter of the shock tube is shown. The materials are beryllium (blue), polyimide (green), acrylic (red) and gold

(yellow). The xenon inside the tube is not colored, but the border of the xenon volume is indicated by the white

surface. The primary shock at 13ns is depicted by a black iso-surface.

the nozzle is replaced with low density polyimide to avoid interactions with a zero mass density. The left panel of Fig.

26 shows the materials that are present in the simulation in color: beryllium (blue), polyimide (green), acrylic (red),

and gold (yellow). The xenon inside the nozzle is, for convenience, not shown in this figure.

The computational domain size is−150< x < 3900, 0< y< 900 and 0< z< 900 in microns, where y and z are the

two directions transverse to the nozzle. The simulation is performed with an effective resolution of 2560×512×512

grid cells using two levels of refinement. The effective cell sizes are therefore approximately 1.6 µm along the tube

and 1.8 µm in the two transverse directions. The domain is decomposed in 4×4×4 grid blocks. The mesh is refined

at all interfaces that involve xenon or gold. To capture the shock front and the cooling layer, the mesh is also refined

where the xenon density exceeds 0.02g/cm3. Grid blocks are also refined if these criteria are satisfied in the ghost

cells.

We used for the hydrodynamic part of the equations the HLLE scheme with a Courant-Friedrichs-Lewy number of

0.8 and the generalized Koren limiter with β = 3/2. For the radiation, we used the multi-group flux-limited diffusion

model with 30 groups. The photon energy range is 0.1eV to 20keV that is logarithmically distributed over the groups.

The radiation diffusion, heat conduction and energy exchanges are solved with the split (decoupled) implicit solver of

van der Holst et al. [2011] using the conjugate gradient method with a Schwarz-type Incomplete Upper-Lower (ILU)

preconditioner.

Due to the symmetry in the problem we only need to simulate one quarter of the nozzle domain (y > 0 and

z > 0) and use reflective boundary conditions at y = 0 and z = 0. For all other boundaries of the domain we use

extrapolation with zero gradient. For the radiation we use zero albedo boundary conditions (radiation propagating out

of the computational domain does not return back).
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We simulated the shock evolution from 1.1ns to 13ns physical time. It took a little over three days to compute on

1000 cores of the HERA supercomputer at the Lawrence Livermore National Laboratory. The number of cells in the

computational domain increased from 26.5 million at the beginning to about 38 million near the end. The 3D material

identity at 13ns is shown in the right panel of Fig. 26. The beryllium has moved into the nozzle and is like a piston

driving a shock in the xenon. This shock is indicated by a black iso-surface (of high ion temperature values). The

xenon itself is not shown but the edge of the xenon is emphasized by a white color to make the xenon entrainment

between the beryllium and polyimide more clear. We can also see the inward moving polyimide which will lead to a

wall shock. In the following we will analyze the shock structure in more detail and check if the results are in agreement

with back-of-the-envelope estimates presented in Drake [2006], Drake et al. [2011].

The shock structure in the xy-plane at time 13ns is shown in Fig. 27. The top left panel is for the material

identification of beryllium (blue), xenon (black), polyimide (green), gold (yellow) and acrylic (red). The nozzle with

inner radius of 600 µm, taper, and shaft with inner radius of 300 µm are visible. The black lines indicate the locations

where the mesh is dynamically refined. The top right panel shows the mass density. Part of the polyimide is of very

low density and represents vacuum. The dense polyimide tube thickness ranges from 50 to 100 µm. The xenon is

compressed by the beryllium piston flow resulting in a primary shock that is located at x≈ 1700 µm. For convenience

we have indicated with black lines where the material interfaces are.

To check the properties of the primary shock we first determine the beryllium piston velocity. For a 1ns laser pulse

of 4kJ energy, the irradiance is 8×1014 W/cm2 for a 800 µm diameter spot. Most of this light will be absorbed in the

beryllium, so that the absorbed energy per unit of area during this 1ns is 8×105 J/cm2. About 20% of the beryllium

mass, corresponding to 4 µm of the 20 µm, will be ablated by the laser [Drake et al., 2011]. The areal mass density

of 16 µm beryllium at 1.8g/cm3 is approximately 3×10−3g/cm2. The conversion from laser energy to kinetic energy

of the remaining 16 µm beryllium has a hydrodynamic efficiency of around 10%. The areal kinetic energy density

0.1×8×105J/cm2 corresponds therefore to an initial velocity of the beryllium of a little more than v = 200km/s. This

beryllium will launch a shock through the xenon-filled tube. This high velocity is only achieved at early times. The

simulated shock velocity gradually reduces to a value between 110km/s and 120km/s at time 13ns as shown in the X

velocity plot of Fig. 27.

The initial xenon gas pressure is 1.1atm while the density is ρ = 6.5× 10−3 g/cm3. With the above mentioned

shock velocity of v ≈ 110km/s we obtain a xenon post-shock pressure at 13ns on the order of ρv2 ≈ 80GPa. The

post-shock pressure at x ≈ 1700 obtained in the bottom right panel of Fig. 27 is in agreement with this estimate. As

the shock wave heats the ions, the ion temperature in the postshock region of a strong shock wave with compression

ratio equal to κ = (γ +1)/(γ−1) is approximately [Drake, 2006]:

kBTi = Ampv2 1−1/κ

κ
, (98)

where kB, mp and A are the Boltzmann constant, the proton mass and atomic mass, respectively. For xenon with atomic

mass A = 131, a shock velocity of 110km/s, and an adiabatic index of γ = 5/3 for ions gives a postshock temperature

of Ti ≈ 3keV. We find with the numerical simulation an ion temperature of 1.2keV in Fig. 28 that shows the region

around the shock. With an effective resolution of 1.6 µm we do not fully resolve this narrow ion temperature peak,

resulting in a lower than expected maximum temperature. We find two other temperature peaks as well. One peak is

near x = 1600 µm behind the shock and another is near y = 250 µm. They overlap with the beryllium-xenon and the

polyimide-xenon material interfaces, respectively. These spikes are probably the result of a low-order convergence
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Figure 27: The radiative shock structure in the 3D circular nozzle simulation at 13ns. The plots show in color contour

the plasma and radiation state indicated in the plot titles as a function of the x and y positions in microns. The colors

in the top left panel indicate beryllium (blue), xenon (black), polyimide (green), gold (yellow) and acryllic (red). The

black lines in this panel show resolution changes, while in the top right panel the lines indicate the material interfaces.
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Figure 28: Zoom-in of the ion temperature near the shock with the x and y coordinates in microns.
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Figure 29: The mean ionization in the circular nozzle simulation as a function of the x and y coordinates in microns.

rate in the interface treatment.

For a high density plasma the collision frequency between electrons and ions is large, so that their temperature will

equilibrate. During the shock, however, the ion temperature jumps so that the ions and electrons are out of equilibrium.

The ions will heat the electrons via Coulomb collisions and form an equilibration zone directly behind the shock. The

electron heating will also increase the ionization in the equilibration zone. Figure 29 shows the average ionization in

the xy-plane. We find from the simulation that the ionization is elevated to about 〈Z〉= 17 at the electron temperature

peak in the equilibration zone. At this peak the energy of each ion is shared with 〈Z〉 electrons. The equilibration

temperature Teq can be approximated as the postshock temperature for a strong shock under the assumption that the

electrons and ions are in temperature equilibrium:

kBTeq =
1

〈Z〉+1
Ampv2 1−1/κ

κ
. (99)

For representative values of the polytropic index between γ = 1.2 and 1.3 for single-temperature xenon, the estimated

equilibration temperature is between Teq = 76eV and 104eV. In reality this temperature will be somewhat lower due

to radiative cooling. The simulated value is Te ≈ 73eV in Fig. 27. This electron temperature is not the final state
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Figure 30: The density at 13ns in color contour. This simulation is performed in the rz-geometry. The axes are in

microns and the black line indicates the change in material level.

in the postshock region since σT 4
e ≈ 2.8× 1012 W/cm2, where σ is the Stefan–Boltzmann constant. The incoming

kinetic energy flux is however ρv3/2 ≈ 4.3× 1011 W/cm2 based on the velocity at time t = 13ns of v = 110km/s

and xenon density ρ = 0.0065g/cm3. There is therefore not enough incoming energy. There must be a cooling

layer [Reighard et al., 2007] through which the electron temperature falls to the final temperature Tf estimated by

2σT 4
f = ρv3/2 ≈ 4.3× 1011 W/cm2. The factor 2 is because the radiative cooling layer emits in both directions

equally. The final temperature is thus Tf ≈ 38eV.

The heated electrons are the main energy source for radiation. In Fig. 27 we show the radiation temperature as a

measure for the total radiation energy density. The photons travel upstream of the shock where they preheat and ionize

the unshocked xenon in the precursor as depicted in the electron temperature panel in Figs. 27 and 29. The radiation

transport in the unshocked xenon is not diffusive and we rely on the flux-limited diffusion to recover the optically thin

free-streaming limit. This free-streaming approximation is accurate enough as long as the radiation transport from

the precursor back to the shock is negligible, in contrast with the almost omnidirectional photon distribution function

as assumed in the diffusive limit. A fraction of the upstream radiation expands sideways and heats the polyimide

wall ahead of the primary shock. This will ablate the polyimide of the wall. The resulting inward polyimide flow is

visible in the Y velocity panel of Fig. 27. This inflow extends at 13ns to x ≈ 2100 µm and does have a magnitude of

about 10km/s. The exact magnitude of this flow will depend on the radiation transport fidelity used in simulations.

The ablated polyimide compresses the xenon as can be seen in the density panel in Fig. 27 by the faint tilted feature

between x≈ 1700 µm and x≈ 2100 µm. The resulting wall shock has an angle with the primary shock and their shock

properties were analyzed in Doss et al. [2009, 2011a].

The material identity in the top left panel of Fig. 27 also demonstrates the entrainment of xenon in between the

beryllium and polyimide. In Doss et al. [2011a] the entrained flow was shown to first get shocked by the wall shock

and then again shocked near the triple point of the wall shock and the primary shock. We also mention that in our

simulations the entrained shear flows produce Kelvin–Helmholtz roll-ups at, for instance, x≈ 1400 µm.

The simulation presented in this section was performed in 3D Cartesian geometry. The axi-symmetry in the

problem does however allow one to perform this simulation in 2D cylindrical rz-geometry as well. We used the

same settings for the numerical radiation-hydrodynamics solvers. The computational domain is −150 < z < 3900 and

0 < r < 900 in microns, where r is the radial coordinate and z is now the coordinate along the tube. The effective

resolution is 2560×512 using two levels of refinement, so that the cell sizes in the rz-geometry correspond to the cell

sizes in the xy-plane in the 3D Cartesian simulation. The 2D mesh is decomposed in 4× 4 grid blocks. The mesh
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Figure 31: Synthetic radiograph image at 13ns for the circular nozzle simulation. The X-ray source is located at

(x,y,z) = (2,−12,0) in mm.

refinement criteria are also the same as for the 3D case. In Fig. 30 the density is shown at the final time 13ns. The

results are quite similar to those of the previous simulation. The main difference is in the entrained xenon, which

requires higher resolution to be fully resolved.

From the CRASH shock tube experiments we typically obtain radiographs by transmitting 5.18keV (mainly V

He-alpha line) X-rays through material whose temperature is of the order of 50eV. These X-rays interact strongly

with the inner-shell electrons. We can therefore use cold opacities for the materials in the experiment to evaluate

the transmission. X-ray photons at this energy experience negligible refraction in the experimental target. So it is

legitimate to create line-of-sight plots that calculate the optical depth along the straight lines (rays), connecting the

X-ray source to the center of the image pixel. To make the simulated images appear more similar to the experimental

backlit pinhole radiographs, we need to take into account the finite pinhole size of about 20mm diameter, the finite

exposure time of about 0.2ns and the effect of a finite number of collected photons (typically 50 photons per 100nm2

image pixel). The first two effects are approximated by smoothing the synthetic radiograph over a few pixels. The

finite photon count can be taken into account by adding Poisson noise.

The radiograph for the circular nozzle simulation is shown in Fig. 31. We locate the X-ray source at (x,y,z) =

(2000,−12000,0)µm. These images show where the dense xenon is. The dense xenon behind the primary shock at

x = 1700 µm and the wall shock is clearly visible. We can also see the entrained xenon and the Kelvin-Helmholtz

roll-up to the left of the primary shock.

3.4.2 Elliptical nozzle

The setup of the elliptical nozzle is very similar to that of the circular nozzle. The main difference is that the wide

tube of 1200 µm inner radius changes the cross-section down the tube into an ellipse with a major axis of 1200 µm

and a minor axis of 600 µm. The first 1.1ns of the simulation is, as for the circular nozzle, performed with the H2D

radiation-hydrodynamics code to determine the laser energy deposition. For the tube geometry in H2D a straight tube

is used with a diameter of 1200 µm. The output of H2D is used to initialize the CRASH code following the recipe

outlined in 3.5.3. If we use the notation that x is the coordinate along the tube and y and z are the two directions

transverse to the tube, then we remap the straight tube of H2D to CRASH using the coordinate transformations shown

by the Eqs. 113 and 114 in which x0 = 500 µm, x1 = 750 µm, εy = 1/2 and εz = 1. That means that the circular
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Figure 32: The materials in the 3D elliptical nozzle simulation at 1.1ns (left panel) and 13ns (right panel). One quarter

of the nozzle is shown. The color code for the materials is the same as in Fig. 26. The black iso-surface indicate the

primary shock.

tube is tapered into an elliptical shaft between x0 = 500 µm and x1 = 750 µm. The domain size, effective resolution,

refinement criteria, boundary conditions, and the used numerical scheme are the same as for the circular nozzle.

The simulation is performed from 1.1ns to 13ns. The number of finite volume cells increased from 29.6 million

initially to about 45.3 million at the end of the simulation. The computational time was 3.5 days on 1000 processor

cores of the HERA supercomputer. The 3D material identification is shown in Fig. 32. The left panel is for 1.1ns and

the right panel for 13ns. The color code is blue for beryllium, green for polyimide, red for acrylic and yellow for gold.

For convenience xenon is not colored to reveal the elliptical shaft. At 13ns the beryllium has moved into the shaft and

drives a shock in the xenon like a piston. The shock front is indicated with a black surface. The edge of the volume

occupied by the xenon is colored in white to visualize the entrainment of xenon between the polyimide and beryllium.

The left panels of Fig. 33 show the material location, mass density and electron temperature, respectively, in

the xz-plane at 13ns. The basic ingredients of the compound radiative shock structure are seen in these panels. The

primary shock near x≈ 1700 µm in this plane is curved, since the diameter of the laser spot of 800 µm is smaller than

the major axis, 1200 µm, of the elliptical shaft. The ripple in the compressed xenon region behind the primary shock

was analyzed for similar experimental conditions [Doss, 2011]. We also find again the tilted wall shock in front of

the primary shock. The electron temperature panel shows the temperature peak in the equilibration zone behind the

primary shock and a decreasing temperature behind that in the radiative cooling zone. The right panels of Fig. 33

show the same physical quantities in the vertical yz-plane. The shock structure in this plane is quite similar to the

results found for the circular nozzle.

The difference in the shock structure and compressed xenon region behind the shock should also be visible in

the synthetic radiographs. Indeed, in Fig. 34 we show in the left panel the image produced by an X-ray source at

(x,y,z) = (2000,−12000,0)µm directed at the xz-plane and in the right panel the image produced by an X-ray source
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Figure 33: The output of the 3D elliptical nozzle simulation at 13ns. The state variables indicated in the plot titles

are shown in color as a function of the (x,z) coordinates given in microns in the y = 0 plane on the left and (x,y)

coordinates in the z = 0 plane on the right. The color bars provide the scales. The color code of the material levels

in the top panels indicates the same materials as in Fig. 27. The black lines in the top panels are for the resolution

changes, while the black lines in the middle panels indicate the change in material identity.
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Figure 34: Synthetic radiographs created along the two transverse axes of the 3D elliptic nozzle at 13ns. The X-ray

sources are at (x,y,z) = (2,−12,0)mm directed at the y = 0 (left panel) and at (x,y,z) = (2,0,12)mm directed at the

z = 0 plane (right panel).

at (x,y,z) = (2000,0,12000)µm directed at the xy-plane. The compressed xenon behind the primary and wall shock

are found as dark features in these images. Note that the image in the right panel is darker than the image in the left

panel, since the rays are going through twice as much xenon (the major axis is twice the minor axis). Also note that the

rippled structure of the compressed xenon layer behind the primary shock is somewhat smoothed out in these images.

3.4.3 Improved geometrical transformation for the elliptical nozzle

When we start a 3D simulation from a 2D output file, we take all grid points in the 3D grid, calculate the R-Z

coordinates, and interpolate to this coordinate pair from the triangulated 2D grid. This procedure results in an axially

symmetric initial condition. For elliptical nozzles, however, we apply a distortion by replacing the actual Y coordinate

of the 3D grid cell with A*Y, where the coefficient A is a function of the axial coordinate. This transforms the circular

cross section of the tube into an elliptical cross section. Note that A=1 near the Beryllium disk where the laser heating

has an affect after 1 nanosecond. The distortion is only applied in the unperturbed part of the domain where the

velocities are still zero, and the various material states are still uniform. Although this simple procedure results in an

elliptical cross section, the thickness of the plastic tube will vary together with the tube diameter. This means that the

tube thickness will be twice as large near the ends of the short axis of the ellipse than at the end points of the long axis

for an axis ratio of 2. In the real experimental target the plastic tube has a roughly uniform thickness even after it is

squeezed into an ellipse. To fix this problem, we modified the algorithm by making A a function of Y as well as the

radial distance R. Points inside the inner side of the plastic tube are stretched according to the original algorithm, but

points outside this radius are shifted rather than stretched so that the thickness of the tube is preserved.
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3.5 Improving on the baseline CRASH code

In this section, we describe several improvements to the baseline CRASH code, made between years 3 and 5 of the

project. First of all we have implemented a new parallel laser energy deposition library as an integral part of our

code. This allows the code to simulate the laser heating and the subsequent radiation-hydrodynamic response in a self-

consistent and efficient way with one single model. Another improvement was needed for the xenon opacities, since

the atomic data provided to our opacity solver were inaccurate. We now use high quality xenon opacities calculated

with the super-transition-arrays (STA) model [Bar-Shalom et al., 1989, 1999, Busquet et al., 2010] as an alternative.

Both the introduction of the laser package and improved xenon opacities turned out to make the radiation transport

much stiffer in some regions. The algebraic multigrid preconditioner using the BoomerAMG solver from the HYPRE

library [Falgout and Yang, 2002] resulted in more accurate solutions. It is the purpose of this section to demonstrate

that these code changes result in improvement in the fidelity of the simulation results. The reported distortion of the

compressed xenon layer on axis [Drake et al., 2011] is now significantly reduced and the wall shock is now more

realistic.

Section 3.5.7 describes how we setup the shock tube and laser pulse with our new laser package that is consistent

with the experiments performed with the Omega laser facility. This is followed in Section 3.5.8 by a discussion of the

simulation results.

3.5.1 CRASH initialization

At the beginning of the CRASH project, we had relatively simple and few initial conditions for the CRASH ex-

periments. The basic initial geometry and physical state of the experiment was hard coded with a few adjustable

parameters, such as tube radius, beryllium disk thickness, density and pressure of xenon, etc. Later we switched to

initialize CRASH with HYADES output, so the initial state was taken care of by setting up the HYADES run. Starting

in year 3, we implemented the laser package into CRASH, and found superior results as compared to those obtained

by initializing CRASH with HYADES. This brought up again the need to initialize runs from the very beginning in

CRASH. The number of applications using CRASH also increased during the project, which meant a large variety of

initial conditions. To match this need, we have implemented a general 2D initialization algorithm, which is controlled

from the input parameter file. The user can specify an arbitrary number of material states defined by the material (e.g.

xenon or acrylic) and physical properties (e.g. density and pressure). The geometry can be described by an arbitrary

number of line segments separating two different material states. The code reads in the material states and the segment

positions, and initializes the physical state and the levelset functions for every grid cell in the simulation domain based

on the closest segment (see van der Holst et al. [2012]) , Simulating the long-term evolution of radiative shocks in

shock tubes.)

3.5.1.1 Initializing CRASH with the laser package

In this section, we present the new package that models the laser energy transport and deposition. In previous re-

ported radiative shock tube modeling efforts [van der Holst et al., 2011, 2012], we used the Lagrangian radiation-

hydrodynamics code H2D [Larsen and Lane, 1994] for the first ∼ 1.1ns. This initializing of the CRASH simulations

with H2D turned out to be problematic in that this produced significantly different shock structures when compared
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to the observations [Drake et al., 2011]. We therefore opted to implement our own laser package directly into the

CRASH code. This also allows us now to simulate the radiative shock experiment in a single self-consistent model.

In addition, the new laser package is parallel, while H2D is a serial code, resulting in improved computational speed.

This laser package model decomposes the laser pulse into many rays. We use a ray-tracing algorithm based on

a geometric optics approximation with laser absorption via inverse Bremsstrahlung along the trajectory of the rays.

Geometric optics is acceptable as long as the electron density does not vary significantly over one wavelength of the

laser pulse. This is satisfied most of the time for our applications of interest, with the exception of the startup phase of

the laser heating. The inverse Bremsstrahlung absorption is the most important absorption mechanism for the CRASH

laser applications [Drake, 2006].

The laser package works both in the 2-D axi-symmetric geometry as well as in 3-D cartesian. For the axi-symmetric

geometry we have implemented two versions of the ray tracing: (1) rays confined to the axi-symmetric plane and (2)

ray tracing in 3-D. In the 2-D ray tracing case we experienced the problem that all rays that are not parallel to the

cylindrical axis will eventually also heat the plasma near the cylindrical axis, resulting in an excessive increase of

the electron temperature near the axis. Using 3-D ray tracing in the axi-symmetric geometry mitigates this problem,

resulting in improved simulations of shock break-out time and evolution of the radiative shocks compared to the 2-D

rays.

Our computationally parallel ray-tracing algorithm is based on previous work on tracing radio rays in the solar

corona [Benkevitch et al., 2010]. Here, we briefly summarize the implementation as needed for the laser heating. At

each time step and for each ray we trace the trajectory with a ray equation that can be derived from Fermat’s principle:

a ray connecting two points r1 and r2 will follow a path which minimizes the integral of refractive index n, i.e. the

variation of the integral

δ

∫ r2

r1

n(r)ds = 0, (100)

where the independent variable s is the arc-length of the ray. This can be shown, see Ref. [Benkevitch et al., 2010], to

be equivalent to
d
ds

(
n

dr
ds

)
−∇n = 0, or,

dr2

ds2 =
dr
ds
×
(

∇n
n
× dr

ds

)
. (101)

By introducing the ray direction, v = dr/ds, the system (101) of three second-order differential equations is trans-

formed in a set of six first-order equations

dr
ds

= v, (102)

dv
ds

= v×
(

∇n
n
×v
)
. (103)

For isotropic collisionless plasmas the refractive index is

n2 = ε = 1−
ω2

p

ω2 , (104)

where ε is the dielectric permittivity of the plasma, ω is the angular frequency of the laser light, and the plasma fre-

quency ωp =
√

e2ne/meε0 depends on the electron density ne, electron mass me, electron charge e and the permittivity

of vacuum ε0. The refraction index is therefore determined from the mass density ρ via n2 = 1−Zρ/ρc, in which Z

is the ion charge and the critical mass density is defined as

ρc =
ε0Ampmeω2

e2 , (105)
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and where A is the mean atomic weight and mp is the proton mass. This provides us with a final expression for the

relative gradient of the refractive index
∇n
n

=− ∇(ρZ)
2(ρc−ρZ)

. (106)

Once this gradient is known, the integration of Eqs. (102)–(103) is performed with the CYLRAD algorithm [Boris,

1971]. The ray trace algorithm of [Benkevitch et al., 2010] is implemented with adaptive step size to handle the steep

gradients in the plasma density. For each integration step, every ray is checked for accuracy and correctness, and we

ensure that rays do not penetrate in regions where Zρ > ρc.

Electron-ion collisions modify the refractive index to a complex value, where the imaginary part corresponds to

absorption

n2 = ε = 1−
ω2

p

ω(ω + iνeff)
. (107)

The effective electron-ion collision frequency is defined as [Ginzburg, 1964]

νeff =
2π

3

(
e2

4πε0kBTe

)2√8kBTe

πme

〈
niZ2〉 lnΛ. (108)

Here ni is the ion number density, kB is the Boltzmann constant, Te is the electron temperature, and lnΛ is the Coulomb

logarithm. It is due to these electron-ion collisions that the laser energy is absorbed into the plasma. The absorption

coefficient (in units of 1/m) is then found as [Drake, 2006]

α =
νeff

c
Zρ/ρc

1−Zρ/ρc
. (109)

While performing the integration along each ray, energy is gradually deposited in the plasma.

We have added code infrastructure in CRASH to facilitate the setup of a laser pulse using a set of rays. For the sake

of brevity we will only describe the 3-D laser pulse implementation in a 2-D axi-symmetric simulation. In general a 3-

D laser pule will generate a 3-D laser heating, and hence 3-D simulations are required. We have code infrastructure to

perform such 3-D simulations, but this is computationally expensive. We assume that the departure from axi-symmetry

is small. The laser pulse is defined with an irradiance (in units of J/s) and a time profile with a given linear ramp-up

time, decay time, and total pulse duration. The laser pulse is further decomposed in a number of laser beams with a

circular cross-section. Each beam is defined by a slope θb with respect to the x-axis as in Fig. 35 and an initial starting

point of the beam defined by xstart and a beam offset rb from the x-axis. For the beams we select a spatial profile of

irradiance that is super-Gaussian as a function of the beam radius r′: ∝ exp(−(r′/a)b), where a is the beam radius and

b is the super-Gaussian order usually chosen to be 4.2. We use a beam margin of r′ = 1.5a, beyond which the laser

energy deposition is assumed to be negligible. Each beam is discretized with the same number of rays nr′ for the radial

beam direction and nφ ′ rays for the angular direction φ ′. Due to symmetry properties for 3-D beams in axi-symmetric

geometry, we only need to consider half of the angular direction of the beam, i.e. we limit to the angular beam range

[0,π]. The number of radial rays should be high enough to obtain a smooth laser heating profile, but as low as possible

for computational speed. This number nr′ is typically chosen such that every computational cell at the critical density

surface, Zρ = ρc, is crossed by at least one ray, preferably more. If the slopes θb of the laser beams are not too large,

the number of angular rays nφ ′ can be selected to be small for the sake of computational speed, while still achieving

sufficient accuracy.
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Figure 35: Each laser beam has a different direction θb relative to the x-axis. The beam rays start at xstart and rb defines

the initial y-position. The beam irradiance profile and the initial beam ray locations are defined as a function of the

polar beam coordinates r′ and φ ′. The thick drawn line is a 3-D ray projected onto the axi-symmetric plane, here

shown as the xy-plane.

For the laser energy deposition, we evaluate the energy emitted by the laser at each time step. The beam energy

is distributed over the number of rays. The local intensity for each ray is obtained from the super-Gaussian beam

profile. The laser energy transport in the CRASH code uses 3-D ray-tracing based on geometric optics. During the

3-D ray tracing, we use the x and r =
√

y2 + z2 positions in the axi-symmetric plane to determine where in the solution

plane the laser energy deposition via inverse bremsstrahlung occurs as well as the further evaluation of the trajectory

in 3-D. For these evaluations we need to map the density and density gradient into the 3-D space. A drawing of a

3-D ray projected onto the axi-symmetric plane is shown in Fig. 35. The projected ray shows not only the reflection

before approaching the critical density surface and the refraction, but also the apparent reflection at a finite distance

from the x-axis instead of a reflection on axis. This apparent reflection is because the 3-D ray is in general not in

the axi-symmetric plane and hence has a minimum distance with respect to the x-axis. It is this effect that avoids

the excessive laser heating on axis as is the case for 2-D rays in which the rays are confined to the axi-symmetric

plane. The deposited laser energy at the current ray location in the axi-symmetric plane is distributed to the nearest

computational zone volumes with the sum of the interpolation coefficients equal to one and subsequently added as an

explicit source term to the right-hand-side of the electron energy density equation. The scheme is fully conservative

since the total energy that is deposited by the laser pulse equals the total laser energy that is absorbed by the plasma.

3.5.1.2 Laser Package Extension to 3D rays with Verification

We have generalized the CRASH laser package to 3D rays in both 2D axial symmetric geometry and 3D Cartesian

geometry. In the previous version of the laser package, the rays were all confined to the same axial symmetric plane,

resulting in an excessive increase of the electron temperature near the axis, since all rays not parallel to the cylindrical

axis would eventually also heat the plasma near the axis. The new 3D laser package mitigates this problem, resulting
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in improved simulations, as measured by validation with experimental results for shock break-out time and evolution

of the radiative shocks.

For the laser energy deposition, we evaluate the energy emitted by the laser at each time step. The energy is

distributed over a finite number of discrete rays conforming to the beam cross-section; the local intensity for each

ray is determined by a selected super-gaussian beam profile that depends on the radial beam coordinate. The laser

energy transport in the CRASH code uses 3D ray-tracing based on geometric optics. The ray-tracing now uses a new

efficient parallel adaptive mesh refinement implementation using the block adaptive tree library (BATL). During the

3D ray tracing the rz-plane is rotated to the current position of the ray trajectory to determine laser energy deposition

via inverse bremsstrahlung as well as the further evaluation of the trajectory. The deposited laser energy at the current

ray location is distributed to the nearest zone volumes at each time step and subsequently added as an explicit source

term to the right-hand-side of the electron energy density equation.
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Figure 36: The radiative shock structure at 13ns of a 3D laser simulation. The plots show in color contour the plasma

and radiation state indicated in the plot titles as a function of the x and y positions in microns. The colors in the top

left panel indicate beryllium (blue), xenon (black), polyimide (green), gold (yellow) and acrylic (red). The black lines

in this panel show resolution changes, while in the top right panel the lines indicate the material interfaces.

We have performed simulations with the new 3D laser package, with results shown in Figure 36. The numerical
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set-up is as follows: An Omega laser pulse irradiates a 21 micron beryllium disk with 0.35 micron wavelength light

for the full width half maximum (FWHM) duration of 1ns and with a laser energy deposition of 3.8kJ. The laser spot

size is 820 micron FWHM diameter. The laser pulse consists of 10 beams and are modeled as 4 beams with the power

per beam weighted by the number of beams approximately at that angle with respect to the normal: 50.6◦ (times 1),

42◦ (times 3), 31.7◦ (times 4), and 10.2◦ (times 2). The intensity of each beam is modeled as a super-gaussian profile

of order 4.2 in the radial beam coordinates. In the simulation below we use 900 by 4 rays for the radial and angular

direction to discretize the laser energy of each beam and multiply the total laser energy deposition by a 0.7 laser

scale factor. For this simulation we used the ARTEP opacities (see section 3.5.6.5) for xenon and CRASH calculated

opacities for the other materials. In addition we use the new HYPRE preconditioner, which improves the convergence

behavior in the flux-limited multi-group radiation diffusion solver. The primary and wall shock are recovered with the

updated CRASH code.

The laser package has been tested in three significant ways. First, the 3D capability of the ray-tracing algorithm

is tested as part of our nightly code verification tests. In the test, a laser ray transports and deposits energy while

propagating through a plasma that has a linear density profile. The refracted ray is tested for angle of incidence,

accuracy of the closest approach to the critical density surface (ray turning point), and total energy deposition along

the ray’s path against the known analytical results (Kruer 2003). Figure 37 shows the result of a 3D laser ray test in an

RZ geometry. (Labeled RX by the code for technical reasons.) Note that the ray does not intersect the X axis, because

it is not in the RX plane at that point.

Second, the nightly tests verify by comparison to the exact solutions that the code maintains the 2nd order con-

vergence of the numerical solution for the turning point and the 1st order convergence of the energy deposition of the

ray.

Lastly, we are validating the full CRASH code, but particularly the laser package, against our experimental results

of shock breakout of a 20 µm Be foil. In the experiments, 10 beams at OMEGA are used to irradiate a Be foil with at a

laser intensity of 7.0×1014 W/cm2, for a 1.1 ns pulse. The shock breakout is measured by two different experimental

techniques to be 450 ps with a systematic error of ± 50 ps. Although our final simulations with the 3-D laser package

are still underway, the preliminary results for shock breakout of a 20 um Be foil with the full experimental intensity

are approximately 400 ps.

3.5.2 Reading 2D CRASH output as an initialization for 3D CRASH runs

Although the laser package works for 3D CRASH runs, it is very expensive to simulate the first nanosecond in a full

3D simulation. This is due to the very small time step required by the laser package, and also the number of rays

required for a highly resolved 3D grid is huge. Since the first nanosecond of the simulation affects the cylindrical part

of the tube only for the PY5 experiment, it is practical to do this simulation in 2D axial symmetry (R-Z geometry).

After the laser heating is finished, we save the full 2D information and start a new 3D simulation. The 3D simulation

reads in the 2D data file and interpolates onto the 3D grid using Delaunay triangulation. The procedure is similar to

the one used for reading the HYADES files, but the list of state variables and their units are fully compatible when

the 2D CRASH file is read into the 3D CRASH run. On the other hand the 2D AMR grid in the CRASH file is more

complicated than the distorted Cartesian grid produced by HYADES, so it needs a general triangulation.
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Figure 37: 3D laser ray turning point test for a ray with a 10◦ angle of incidence in an RZ geometry. Note that the ray

does not intersect the X axis, because it is not in the RZ plane at that point.

3.5.3 Initializing CRASH with Hyades

The laser energy deposition during the first 1.1ns is evaluated with the Lagrangian radiation hydrodynamics code

Hyades 2D (H2D) [Larsen and Lane, 1994]. The output of H2D is on a distorted logically Cartesian mesh of nx×ny

cells. When we initialize the CRASH code with H2D, this mesh is first triangulated by splitting each quadrilateral

along the shorter diagonal. The interpolation from the triangulated Hyades grid requires finding the triangle that

surrounds the center of a given grid cell of the CRASH code. A simple linear search can become very inefficient when

we have many grid cells (order of a hundred thousand) per processor. To accelerate this method, first we create a

uniform grid with about 200 by 200 resolution that covers the whole domain. For each rectangular cell in the uniform

grid we find and store the list of triangles that intersect it, which can be done rapidly. Then we perform the interpolation

onto the CRASH grid by first finding the rectangular cell that surrounds it, and then we only check the triangles that

intersect this cell to see which one contains the CRASH grid cell center.

The H2D simulations are performed on a Lagrangian grid where all cells correspond to a unique material. These

materials are identified by a material index in the H2D output. Our code uses an Eulerian grid and we track the material

by means of level set functions. These level set functions are smooth and signed distance functions, initialized with

the following algorithm. For each cell i of the H2D grid having material index αi, the level set function for material

αi is set to the distance to the closest H2D cell that contains a material different from αi:

dαi(i) = + min
j,α j 6=αi

|ri− r j|, (110)

where ri is the location of cell i. The level set functions for the other materials, β 6= αi, are set to the negative distance

to the closest cell containing material β :

dβ (i) =− min
j,α j=β

|ri− r j|. (111)

We interpolate these level set functions to the cells on the CRASH grid. In our first-order level set scheme the material
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in the cell is indicated by the largest level set function. For the simulations with H2D of our shock tube experiments

we use xenon, beryllium, polyimide, gold, acrylic and “vacuum”. In CRASH, vacuum is reassigned as polyimide with

low mass density. At later times during the evolution, the location of material m follows the simple advection equation

for the level set function
∂dm

∂ t
+∇ · (dmu) = dm∇ ·u. (112)

Again, the material having the largest dm is assigned to be the material of the cell.

A 3D nozzle is created from 2D Hyades as follows. We first read the H2D shock tube output and triangulate the

data. After that we transform the coordinates in the transverse directions y and z. The circular cross section of the tube

shrinks into an ellipse or smaller circle by means of

y′ = y
[

1+(εy−1)max
(

0,min(1,
x− x0

x1− x0
)

)]
, (113)

z′ = z
[

1+(εz−1)max
(

0,min(1,
x− x0

x1− x0
)

)]
, (114)

where εy and εz are the factors with which the y and z coordinates contracts for x > x1 along the tube. This shrinking

varies linearly between x0 and x1. For x < x0 the tube is not modified. This means that the plasma at the far end is

relocated closer to the axis. This will change the output of H2D to an unphysical state (the solution of the straight

tube is not the same as the solution of the nozzle). The impact of this change in geometry is however minimal since at

1.1ns the shock dynamics did not yet reach the far end of the shock tube.

3.5.3.1 Limitations of Hyades

A rate-limiting element for our predictive-science studies has been the Hyades code, a serial, Lagrangian, rad-hydro

code that we have used to model the laser-energy deposition phase of the experiment. With the arrival of a rezoner for

this code, we proved able to accomplish the sets of order 100 runs needed for our UQ studies. In particular, we com-

pleted during 2010 a run set that we are using to initiate the current multi-dimensional UQ runs for CRASH. However,

we encountered a number of issues that led us to decide that it was necessary for us to implement a laser package in

CRASH. Figures 38 and 39 illustrate two of the issues that support this decision. Figure 38 illustrates that rezoning

impacts the region where Be, Xe, and Au interact, which is where the wall shock-primary shock interactions will later

become important. It is worth noting that manual rezoning will produce similar variations though in a less controlled

and less quantifiable fashion. Figure 39 shows that running the same physical problem, driven by thermal radiation,

produces very different results when Hyades is used for the first ns than it does when only CRASH is used throughout.

We do not know why this occurs; it might reflect some inadequacy in our mapping of the parameters between codes,

although we have examined this closely, or the lack of conservation of vorticity in Hyades, or something else. We

believe that Hyades is a very useful code for experiment design and for other things Lagrangian codes are generally

used for. However, doing UQ studies of systems that generate substantial vorticity, as we need to do, is not an area of

strength for this code.

3.5.4 Boundary conditions for radiation diffusion

We have also been studying effects of boundary-condtion (BC) treatments for radiation problems. Ambiguity of BCs

arises because angle averaging, inherent in diffusion approximations, discards information; physics on the boundary
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Figure 38: Effect of rezoner settings on Hyades simulation outputs. Log density is shown on an RZ plot. The rezoner

is automatically adjusting a specified number of zones near the intersection of Be, Xe, and gold on the upper left. The

only difference in these runs is that 6 zones are adjusted for the left case while 3 are for the right.

Figure 39: Results from two simulations that should give identical results. In both cases, a 167 eV thermal x-ray flux

irradiates a 34 m thick Be disk for 1 ns and results are shown at 13 ns. Top: run in Hyades for 1 ns then CRASH.

Bottom: run only in CRASH.
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can be only incompletely described. Thus, an approximation is required, which can take the form of an integral

constraint that makes assumptions about the discarded angular information [Pomraning, 1973, p.51] [Castor, 2004,

p.242].

Applying an integral constraint, and specifying that no incident radiation can originate outside the domain, gives a

suitable boundary condition, which applies to both gray transport or to individual energies of multigroup transport,

− 1
2
〈µ〉cEε +

1
2

Fout = 0, (115)

where Eε is the radiation energy density, Fout is the radiation energy flux density emerging from the boundary, 〈µ〉
is the mean cosine of the propagation angle of the emergent radiation, and c is the speed of light. Until now, in the

CRASH project, we have used a hard-coded value of 〈µ〉 = 1/2, which assumes radiation is in the diffusion limit at

the boundary. We now allow arbitrary values of 〈µ〉 and, in particular, have investigated 〈µ〉= 1, which corresponds

to free-streaming at the boundary [Pomraning, 1982], a situation which often obtains in HEDP problems.

Following Myra and Hawkins [2013], the flux at the boundary interface is

Fn+ 1
2
= 〈µ〉c

(
2Deff.En

2Deff.+ c∆x〈µ〉

)
, (116)

where Deff. is the diffusion coefficient at the interface and ∆x is the grid spacing. Having the flux at the boundary, we

can calculate, self-consistently, the energy flow off the computational mesh. Comparisons of this flow, using PDT and

CRASH, are currently in progress.

We have also introduced a scheme for calculating an extrapolation length as a function of energy group, which is

also a function of 〈µ〉. Using this scheme, we can then solve for the ghost-cell value of Eε needed by the CRASH

code,

En+1 =

(
1− 3

2 κ∆x〈µ〉
1+ 3

2 κ∆x〈µ〉

)
En, (117)

where En+1 is the value of Eε in the first ghost zone (here at a right boundary), En is Eε at the last computed cell, and

κ is the absorption coefficient. With this result, we can compute BCs in CRASH using a variety of integral schemes.

Figure 40 shows the effects of setting 〈µ〉 at the boundary for FLD. Especially notable: Discrepancies in Trad are

cumulative with time. By 200 ps, there is ∼ 7% discrepancy in Eε at the right boundary. In addition, changing the

value of 〈µ〉 at the right boundary—which is the only difference between the two simulations—significantly influences

evolution of the whole domain (note the resulting discrepancy at the left boundary). In part, these counter-intuitive

results follow from the temperature-dependent, real opacities and multiple materials used in these runs.

3.5.5 Improvements to the Modeling of Equations of State in Dense Plasmas

The development of theoretical models to simulate the Equation Of State (EOS) for dense plasmas had been mostly

finished in 40s-50s (see Zeldovich and Raizer [1966]). One can solve numerically the thermodynamic parameters and

radiation transport in high-temperature plasmas, if the atomic and ion ”parameters”are known such as all ionization

potentials, an excitation energy for all levels, as well as the degeneracy for both ground and energy levels. The

researcher may be tempted to solve the coupled system of the Saha equations, which relate the populations of ions

with different cherge numbers, however, the latter approach appears to be inoptimal, if plausible at all.
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Figure 40: Result from a 10-group calculation of the 1D CRASH-based problem described in Ref. [Myra and

Hawkins, 2013] using the CRASH code. Equation 117 is used to set the BCs at both the left and right boundaries. The

solid curve shows the solution for 〈µ〉= 1 at the right boundary, while the dashed curve shows 〈µ〉= 1/2 at the right

boundary. In both cases, the opaque left boundary uses 〈µ〉= 1/2.

Here, we employ the assumption of a Local Thermodynamic Equilibrium (LTE). This means that we assume the

population of all atomic and ionic states to be exactly the same as those calculated using the methods of statistical

physics [Landau and Lifshitz, 1980]. The Section is split into two parts, the first of them being entirely devoted

to the thermodynamic analisys applied to LTE dense plasmas. It is more focused on the EOS function calculation,

however, the obtained populations and partition function are also used in the second part, to find opacities. This makes

the overall aproach to the radiation hydrodynamics to be consistent. The second part describes the way to apply the

results of the first part to a problem of the radiation transport in plasmas. This transport is treated in the framework of

Multi-Group Diffusion (MGD). The assumtions of LTE and MGD are key points of the presented work.

3.5.5.1 Effect of the Fermi statistics on Thermal Ionization

While simulating the ionization equilibrium in partially ionized electron-ion plasmas using Saha equations, the elec-

trons are usually assumed to be an ideal Boltzmann gas. However, the electron is a Fermion with spin of 1/2. In

practical calculations the conditions for applicability of the Boltzmann gas model for electrons are often not satisfied,

resulting in very low accuracy. Therefore, it is worth while checking whether or not one needs to assume Boltzmann

statistics for the electrons when solving the ionization equlibrium.

For realistic quantitative simulations this assumption is completly unnecessary, as solving the ionization equilib-

rium under the incorrect assumption of Boltzmann statistics is not any easier than that with the correct Fermi statistics

for electrons.

In a partially ionized plasma the free electron density, corrected by the effects of the Fermi statistics (’the exchange

interaction’), should be used in solving the Equation-Of-State (EOS), which is also directly affected by the exchange

interactions. There is no need to remind that at the given electron density the exchange interaction increases the

electron pressure and the internal energy density (see Landau and Lifshitz [1980]). On the other hand, in partially
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ionized plasmas this effect may be partially or even fully balanced by the electron density decrease due to the effect of

the exchange interaction on the ionization equilibrium.

Helmholtz free energy. Consider an ionized monatomic gas with positive non-complex ions. The Helmholtz free

energy, F = Fion +Fe, is assumed to be the total of contributions from each of the ion charge states, i = 0 to imax (we

apply Eq.(42.3) from Landau and Lifshitz [1980] to account for these contributions), as well as the contribution from

electrons:

F =−T
imax

∑
i=0

Ni log

[
gi

eV
Ni

(
MT
2π h̄2

)3/2

exp

(
−

i−1

∑
j=0

I j

T

)]
+Fe, (118)

where Ni = niV is the total number of ions in the charge state i in the volume V and I j ( j = 0,1,2, . . . ) is the energy

needed to ionize an atom or ion from the charge state j to the charge state j+1 (the ionization potential), and gi is a

statistical weight of an ion (atom) in a given charge state (see below for more detail).

Ionization equilibrium: formulation of the problem. Now we formulate the requirement for the ionization

equilibrium with respect to the reaction (i)↔ (i+1)+ e for each ion charge state, i. The Helmholtz free energy is a

minimum at the equilibrium set of Ni and Ne. Therefore, the total derivative of F with respect to Ne should be zero:

∂F
∂Ne

+
dNi

dNe

∂F
∂Ni

+
dNi+1

dNe

∂F
∂Ni+1

= 0. (119)

For the reaction under consideration, the increments in the particle numbers should be related as follows: dNi =

−dNi+1 =−dNe. Therefore the requirement, dF/dNi−dF/dNi+1−dF/dNe = 0, gives:

−T log
[

gi

Ni
e−∑

i−1
j=0 I j/T

]
+T log

[
gi+1

Ni+1
e−∑

i
j=0 I j/T

]
−µe = 0, (120)

where we applied the definition of the chemical potential, µ = (∂F/∂N)T,V , to the electron gas. The solution of the

ionization equilibrium, therefore, reads:

Ni+1/gi+1 = (Ni/gi)e(−µe−Ii)/T , (121)

or, applying this recursively:

Ni/gi = (N0/g0)e
(−iµe−∑

i−1
j=0 I j)/T = (N0/g0)(ge)

ie−∑
i−1
j=0 I j/T , ge = e−µe/T , (122)

where ge is the effective statistical weight of a free electron. Indeed, the effective statistical weight of i electrons com-

bined with an ion in the charge state, i, is the product of statistical weights for each of the particles under consideration,

(ge)
igi, in accordance with Eq.(122).

In the limiting case of ge� 1 (a Boltzmann gas of electrons with large negative value of µe), ge might be interpreted

as the large number of elementary quantum states the detached electron can occupy, which facilitates the ionization

by resulting in a higher total probability for the ionized state. In the opposite limiting case of a degenerate Fermi gas

of electrons, the positive chemical potential, µe > 0, tends to the Fermi energy EF , which in this limiting case is much

greater than the temperature. Accordingly, the exponentially low value of ge = e−EF/T in this case means the low

probability for an electron to jump from a bound state with negative energy to a free state above the threshold of the

positive Fermi energy.

Partition function and electron density. We now introduce the ion partition function, pi = Ni/Na, Na, being the

total number of atoms. Since the partition function is normalized by unity, we have:

pi =
gi(ge)

ie−Ei/T

S
, (123)
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where we introduced the statistical sum:

S =
imax

∑
i=0

[
gi(ge)

ie−Ei/T
]
, (124)

as well as the total ionization energy spent to ionize the atom to the state i:

Ei =
i−1

∑
j=0

I j. (125)

Introducing the averaging operator acting on an arbitrary function of the ion charge number, 〈 fi〉= ∑ pi fi, and assum-

ing quasi-neutrality, Ne = ∑ iNi, we obtain the expression for the electron density:

Z = Ne/Na = 〈i〉. (126)

On the other hand, for given T and na = Na/V the electron concentration may be found as a function of ge(= e−µe/T ).

Now we assume electrons form an ideal Fermi gas. This assumption immediately gives us another relationship between

the electron density and ge (see Eq.(56.5) from Landau and Lifshitz [1980]):

Z = ge1Fe1/2(ge). (127)

The coupled equations (126) and (127) are used below to solve Z and ge. Here

ge1(T,Na/V ) =
2V
Na

(
meT
2π h̄2

)3/2

(128)

is a value such that in the Boltzmann electron gas ge = ge1/Z would hold. Feν(ge) is the Fermi function:

Feν(ge) =
1

Γ(ν +1)

∫ xν dx
geex +1

, (129)

where Γ-function is introduced as usually: Γ(ν +1) = νΓ(ν), Γ(1/2) = π1/2. Below we use the following auxiliary

functions:

R−(ge) =
Fe−1/2(ge)

Fe1/2(ge)
, R+(ge) =

Fe3/2(ge)

Fe1/2(ge)
. (130)

Derivatives along the ionization curve. Taking differential of the equation of ionization equilibrium, G = 0, one

gets an equation relating the differentials of different variables along the curve of ionization equilibrium:

dge

ge

(
〈i2〉−Z2 +ZR−(ge)

)
+

dT
T 2 (〈iEi〉−〈Ei〉Z)) =

(
3
2

dT
T

+
dV
V

)
Z, (131)

here we substitute wherever possible Z for 〈i〉 and ge1Fe1/2(ge). Accordingly, the differential of Z is:

dZ =

(
3
2

dT
T

+
dV
V
− R−(ge)dge

ge

)
Z. (132)

To solve the ionization equilibrium for the given T and na = Na/V , one needs to solve ge from equation G(ge) =

0, G(ge) = 〈i〉−ge1Fe1/2(ge), which is obtained by means of excluding Z from Eqs.(126,127). It may be solved using

the Newton-Rapson iterations with any trial value, log(ge)old , the improved value, log(ge)new, is obtained from the

equation as follows:

log(ge)new = log(ge)old−
〈i〉−ge1Fe1/2((ge)old)

〈i2〉−〈i〉2 +ZR−((ge)old)
, (133)
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where the derivative geG′, which should stand in the denominator of Eq.(133), is derived using the easy-to-check

equations as follows:

ge
dFeν(ge)

dge
=−Feν−1(ge), (134)

and for any set of values in the charge states, fi:

ge
∂ 〈 fi〉
∂ge

= 〈i fi〉−〈 fi〉〈i〉. (135)

We see that to solve iterations in Eq.(133) for Fermi gas of electrons is not a more computationally intense problem

comparing with the same problem in assuming electrons to be a Boltzmann gas. In the latter case, ge→+∞, we have

Feν(ge) ≈ 1/ge (see Eq.(146) below) and ge ≈ ge1/Z, which allows us to iterate Eq.(133) as a somewhat simpler

equation for Z: log(Znew) = log(Zold)+(〈i〉−Zold)/(Zold + 〈i2〉−〈i〉2). However in any case, the most cumbersome

computations while solving Eq.(133) for a Fermi gas, or the equation for Z for a Boltzmann gas, is in explicitly

calculating the numerous partition functions for many charge states and excitation levels. Compared with these bulk

computations, the presence of the Fermi functions in Eq.(133), which may be tabulated for all interesting cases of

ν =−1/2,1/2,3/2, does not matter at all.

Plasma thermodynamics and Equation-Of-State. Now we substitute the ion partition function into Eq.(118).

After some algebra we obtain:

F =−T Na log

[
eV
Na

(
MT
2π h̄2

)3/2
]
−T Na logS+Ωe, (136)

the thermodynamic potential Ωe = Fe− µeZNa for Fermi gas of electrons is given by Eq.(56.6) from Landau and

Lifshitz [1980]:

Ωe =−[ge1Na]T Fe3/2(ge), (137)

the product in the square brackets, being independent of Na because ge1 ∼ N−1
a . Eq.(136) provides the free energy

in the case of local thermodynamic equilibrium with the first term being the contribution from the ion translational

energy. This term may be written as the function of the ion temperature, in the case the latter differs from the electron

temperature. Unless the ion-ion interaction is taken into account, this first term gives the contributions of naTi and

3naTi/2 to the total plasma pressure and total energy density correspondingly. The second term is the Boltzmann

distribution of ions over the ionization and excitation states, expressed in terms of the statistical sum. Finally, the

electron gas with the variable particle number gives the contribution of Ωe instead of Fe.

While differentiating Eq.(136) with respect to T and V , it is important that the derivatives by ge from the second

and third terms cancel each other: ge(∂ logS/∂ge) = 〈i〉 = Z and −gege1Fe′3/2(ge) = ge1Fe1/2 = Z. That is why for

the internal energy density, E , and for the pressure we find:

E =−T 2

V

(
∂

∂T

(
F
T

))
= Ei +Ee, Ei =

3
2

T na, Ee = na

[
3
2

T ZR+(ge)+ 〈Ei〉
]
, (138)

P =−∂F
∂V

= Pi +Pe, Pi = naT, Pe = naT ZR+(ge). (139)

However, while calculating the second order thermodynamic derivatives, like the specific heat, the derivatives of

ge essentially sophisticate the calculations. The result may be expressed in terms of covariances: 〈δ 2i〉 = 〈(i−Z)2〉,
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〈δ 2Ei〉 = 〈(Ei− 〈Ei〉)2〉 and 〈δ iδEi〉 = 〈(Ei− 〈Ei〉)(i− Z)〉. In a similar way one can find the specific heat in an

isochoric process, per the unit of volume:

CVe =
∂Ee

∂T
= na

 〈δ 2Ei〉
T 2 +

15
4

ZR+−

(
3
2 Z− 〈δEiδ i〉

T

)2

〈δ 2i〉+ZR−

 , (140)

the temperature derivative of pressure:

∂Pe

∂T
= naZ

[
5
2

R+−
3
2 Z− 〈δEiδ i〉

T
〈δ 2i〉+ZR−

]
, (141)

as well as the isothermal compressibility:

V
∂Pe

∂V
=− Z2naTe

〈δ 2i〉+ZR−
. (142)

For simplicity in the above equations, the contributions due to ion translational motions,

CVi =
3
2

na,
∂Pi

∂T
= na, V

∂Pi

∂V
=−naT, (143)

are omitted.

The speed of sound, Cs, is defined in terms of the adiabatic comressibility (at constant entropy), C2
s =

(
∂P
∂ρ

)
ad

,

which may be parametrized in terms of effective adiabatic index, γ , such that γ
P
ρ
=
(

∂P
∂ρ

)
ad

, herewith ρ is the mass

density. To calculate this, one can take Eq.(3.72) from Drake [2006],(
∂P
∂ρ

)
ad
=

(
∂P
∂ρ

)
T
− ρ

CV

[(
∂ (E /ρ)

∂ρ

)
T
− P

ρ2

](
∂P
∂ρ

)
T
.

Note that in Drake [2006] both the internal energy and the specific heat are related per a unit of mass, while we relate

them to the unit of volume. Now we apply the thermodynamic identity as follows:(
∂ (E /ρ)

∂ρ

)
T
− P

ρ2 =− T
ρ2

(
∂P
∂T

)
ρ

, (144)

which gives:

γ =
ρ

P

(
∂P
∂ρ

)
T
+

(
∂P
∂T

)2

ρ

T
CV P

. (145)

Note that in the last three equations we denote the derivative at constant V as that at constant ρ and used the derivatives

over ρ instead of those over V : V ∂

∂V =−ρ
∂

∂ρ
.

Discussion: Estimating the effect of the Fermi statistics on the ionization degree. Eqs.(131,132) allow us to

evaluate the effect of electron Fermi statistics on ionization. From Eq.(146) one can see that for large ge (Boltzmann

gas) the equation, G(ge) = 0, reduces to 〈i〉− ge1/ge = δFe, where δFe is a small negative correction to the Fermi

function at ge→ ∞:

Feν(ge) =
1

Γ(ν +1)

∫ xν dx
geex +1

=
1

Γ(ν +1)

∫ xν dx
geex +δFe =

1
ge

+δFe. (146)

Assuming δFe to be a small increment in the right hand side of Eqs.(131,132), and by finding dge/δFe from Eq.(131)

at dV = dT = 0 and then finding dZ/δFe from Eq.(132) gives:

δZ = ZδFe
〈i2〉−Z2

〈i2〉−Z2 +Z
. (147)
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The correction is negative as long as δFe is negative. Thus, due to the Fermi gas effects for detached electrons, the

ionization degree is always lower than that predicted by the Saha equilibrium equations under the assumption of a

Boltzmann electron gas.

This effect should be accounted for while treating the effect of the Fermi statistics for electrons in the equation of

state. Specifically, at constant electron density the exchange interactions between the electrons increases the electron

pressure, but in the partially ionized plasma the magnitude (if not the sign!) of this effect can be compromised by the

pressure reduction due to the decrease in electron density.

3.5.5.2 Madelung approximation of electrostatic energy

Coulomb interactions may be accounted for within the Madelung approximation. According to this model, we

assume that the net charge of an ion and all of the electrons bound to it is concentrated in one point. For an ion in

the charge state i, i free electrons are considered to be coupled with it, being uniformly distributed over its ion sphere,

which is a sphere of volume 1/na, with the ion at its center. While calculating the electrostatic energy we neglect

the Coulomb interactions between charges related to different ion spheres. As a result, we only need to calculate

the electrostatic energy of an ion with free electrons coupled to it, which is equal to the energy of electron-electron

interactions and the energy required to put the ion at the center of the ion sphere:

EE =
1
2

∫ riono

r=0
qeneϕe(r)dV −qeiϕe(0) =

3
5

q2
e i2

riono
− 3

2
q2

e i2

riono
=− 9

10
q2

e i2

riono
, (148)

where riono stands for the radius of the ion sphere, and the potential of the electrostatic field of electrons is as follows:

ϕe(r) = ei
(
−3

2
1

riono
+

1
2

r2

r3
iono

)
. (149)

Helmholtz free energy. The extra term in the free energy, which accounts for the electrostatic energy, is as follows

(see also Eq.(3.50) in Drake [2006]):

FM =−EM

imax

∑
i=0

i2Ni, EM =
9
10

q2
e

riono
, riono =

(
4π

3
na

)− 1
3
. (150)

Here the Madelung energy,

EM =
9

10
q2

e

riono
=

1.8Ry
(riono/a)

, (151)

characterizes the electrostatic energy related per atomic cell. It is conveniently expressed in terms of the Rydberg

constant, Ry = q2
e

2a ≈ 13.60 eV, as long as the ion sphere radius, riono, is related to the Bohr radius, a = h̄2/meq2
e ≈

0.5 ·10−10 m.

Ionization equilibrium. Accordingly, in the requirement for ionization equilibrium, ∂F/∂Ni − ∂F/∂Ni+1 −
∂F/∂Ne = 0 (with respect to the reaction (i)↔ (i+1)+e), the term ∂FM/∂Ni−∂FM/∂Ni+1 will give the contribution

of (2i+1)EM to the left side:

−T log
[

gi

Ni
e∑

i−1
j=0 I j/T

]
− i2EM +T log

[
gi+1

Ni+1
e∑

i
j=0 I j/T

]
+(i+1)2EM−µe = 0. (152)

The solution of the ionization equilibrium, hence, reads:

Ni+1

gi+1
=

Ni

gi
exp
(
− 1

T
(Ii− (2i+1)EM +µe)

)
, (153)
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or, applying recursively and reducing the sum ∑
i−1
j=0(2 j+1) = i2,

Ni

gi
=

N0

g0
(ge)

i exp

(
i2

EM

T
−

∑
i−1
j=0 I j

T

)
. (154)

This may be interpreted as the ionization potential lowering caused by the Coulomb interaction. Each of the potentials,

Ii, is reduced by (2i+1)EM . Energy of the ion of the charge state i is:

E∗i =
i−1

∑
j=0

I j− i2EM. (155)

This effect shifts the ionization equilibrium towards higher ionization degrees for a given temperature and atomic

density.

Partition function. The common multiplier, N0
g0

, in each of Eqs.(154) may be also represented as Na
S . From the

normalization condition, ∑Ni = Na, we find that S is a statistical sum:

S =
imax

∑
i=0

gi(ge)
i exp

(
−E∗i

T

)
, (156)

so that:

pi =
Ni

Na
=

1
S

gi(ge)
i exp

(
−E∗i

T

)
. (157)

Differentials along the curve of ionization equilibrium obey the following equations:

Age

dge

ge
= AV

dV
V

+AT
dT
T

, (158)

Age = 〈δ 2i〉+ZR−(ge), AT =
3
2

Z− 〈δ iδE∗i 〉
T

, AV = Z +L〈δ (i2)δ i〉, (159)

where

L =
EM

3T
=

3
5

Ry[eV ]

T [eV ]riono[a]
. (160)

Again, we express the result in terms of covariances, 〈δaδb〉 = 〈(a−〈a〉)(b−〈b〉)〉, and mean values, which are

now being calculated using the modified partition functions. Differentiation of mean values, which is necessary for

derivation of the above equation on differentials, is not a complicated problem with the following formula:

d〈 fi〉=
〈

δ fiδ

(
d pi

pi

)〉
, (161)

where fi is a function of the only argument i, for example, iEi or i2 + i.

The ionization equilibrium can be solved using the old technique, i.e. the Newton-Rapson iterations, defined in

Eq.(133).

The full Helmholtz free energy now includes the contribution of the electrostatic field energy as in Eq.(150):

F =−T
imax

∑
i=0

Ni log

[
gi

eV
Ni

(
MT
2π h̄2

)3/2

exp

(
−

i−1

∑
j=0

I j

T

)]
+Fe−

imax

∑
i=0

Nii2EM. (162)

With the ion partition functions in Eq.(157) one can rewrite Eq.(162) in the following form:

F =−T Na log

[
eV
Na

(
MT
2π h̄2

)3/2
]
−T Na logS+Ωe, (163)
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where, again, Ωe = Fe−µeNa ∑ ipi = Fe−µeNa〈i〉.
Plasma thermodynamics and Equation-Of-State. While differentiating Eq.(163) with respect to T and V , again

we see that the derivatives by ge from the second and third terms cancel each other: ge(∂ logS/∂ge) = 〈i〉= Z, which is

evident from d logS = 〈d(log pi)〉, and −gege1Fe′3/2(ge) = ge1Fe1/2 = Z. Accordingly, for the internal energy density,

E , and for the pressure, P, we find the following general expressions:

E =−T 2

V

(
∂

∂T

(
F
T

))
= Ei +Ee, Ei =

3
2

T na, Ee = na

[
3
2

T ZR++ 〈E∗i 〉
]
, (164)

P =−∂F
∂V

= Pi +Pe, Pi = naT, Pe = na

[
T ZR+−V 〈∂E∗i

∂V
〉
]
, (165)

where we assume a general dependence E∗i = E∗i (V ), such as that in Eq.(155).

In the above equations we add the Madelung corrections to the energy of the electron gas, Ee, and to the electron

pressure, Pe, because those corrections are controlled by the electron temperature.

The thermodynamic derivatives can also be expressed in a general form for E∗i = E∗i (V ) in such a way that one can

find the specific heat in an isochoric process, per the unit volume:

CVe =
∂Ee

∂T
= na

 〈δ 2E∗i 〉
T 2 +

15
4

ZR+−

(
3
2 Z− 〈δE∗i δ i〉

T

)2

〈δ 2i〉+ZR−

 , (166)

the temperature derivative of pressure:

∂Pe

∂T
= na

[
5
2

ZR+−
(

Z +
V
T
〈δ ∂E∗i

∂V
δ i〉
) 3

2 Z− 〈δE∗i δ i〉
T

〈δ 2i〉+ZR−
− V

T 2 〈δ
∂E∗i
∂V

δE∗i 〉

]
, (167)

as well as the isothermal compressibility:

V
∂Pe

∂V
= naT

−
(

Z + V
T 〈δ iδ ∂E∗i

∂V 〉
)2

〈δ 2i〉+ZR−
+

V 2

T 2 〈δ
2 ∂E∗i

∂V
〉− V 2

T
〈∂

2E∗i
∂V 2 〉

 . (168)

Again, for simplicity in the above equations the contributions due to ion translational motions,

CVi =
3
2

na,
∂Pi

∂T
= na, V

∂Pi

∂V
=−naT, (169)

are omitted.

To apply the Madelung theory we calculate the first and the second partial derivatives of the energy levels over

volume using Eq.(155):
V
T

∂E∗i
∂V

= Li2,
V 2

T
∂ 2E∗i
∂V 2 =−4

3
Li2. (170)

Eqs.(155,170) allow for specification of all averages and covariances in the expressions for thermodynamic vari-

ables and derivatives.
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3.5.5.3 Excited states of atoms and ions

To account for excitation of atoms and ions we need not only to involve the distribution over the ionization states, i,

but also to quantify the ion distribution over the ground and excited levels.

For simplicity, multiple excitation and autoionization are neglected. We count as the separate excited levels only

those for which the principal quantum number, n, of the outermost electron, exceeds that for the atom or ion in its

ground state, ngr, by at least one. The excited states, therefore, can be enumerated using two indexes, namely, the ion

charge, i = 0,1,2..., and the principal quantum number n(i) = ngr(i),ngr(i)+1, ....

The partition function, pi, describing the ion distribution over charge state i (recall that ∑i pi = 1), is now split into

smaller populations, pi,n, with each relating to a particular excitation level, n. Note that:

∑
n

pi,n = pi, ∑
pi,n

pi
= 1. (171)

Which is why the statistical weights, wi,n, and, hence, the statistical sum and the partition functions become more

complex:

wi,n = gi,n ·gi
e exp

(
−

E∗i,n
T

)
, S =

imax

∑
i=0

∞

∑
n=ngr

wi,n, pi,n =
wi,n

S
, (172)

where gi,n stands for the excited level degeneracy, and the energy of the excited state,

E∗i,n = E∗i +Eexc
i,n , (173)

now includes the contribution from the ionization energy, the excitation energy and, generally speaking, the contribu-

tion from the electrostatic energy.

We take the values of the excitation energy, Eexc
i,n , from several sources: [spe, 2009], [nis, 2009], [Martin and

Zalubas, 1979], [Saloman, 2004]. When some values are missing in those sources, we calculate them using the

following formula:

Eexc
i,n = Ii−Ry

(i+1)2

n2 . (174)

For the degeneracies of excited levels we assume gi,n = 2n2. To calculate the ground level degeneracy we use the

electron configurations from Carlson et al. [1970]. Some of the values of degeneracies have been modified to match

the data from Cox [2000].

Up to this point mean values and covariances were being calculated over imax + 1 possible values of i, but now i

is not the only variable that the energy levels depend on. Accounting for excitation levels in the way described above

leads to energy levels being a function of i and n. This only increases the number of terms in the statistical sum, but

does not change anything in principle. To obtain the thermodynamic variables and the thermodynamic functions we

can just replace the mean values over i with mean values over i and n in the Eqs.(164), (165), (166), (167), (168) and

substitute the new expression, as in Eq.(174), for energy levels.

3.5.6 Modeling of Radiation Transport and Opacities in Dense Plasmas

3.5.6.1 Multi-group diffusion: governing equations and general ralationships

Governing equation to describe the radiation transport in the multigroup diffusion approximation may be written as

the partial differential equation for the spectral energy density, Eε , which is related to the unit ov volume and the unit
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interval of the photon energy, ε . The energy is assumed to be integrated over the solid angle of directions of the photon

propagation. Once the spectral energy is integrated density over photon energies, the total radiation energy density is

obtained:

E =
∫

∞

0
Eε dε. (175)

The governing equation for the spectral energy density is as follows:

∂Eε

∂ t
+∇ · (uEε)− (γR−1)(∇ ·u)ε ∂Eε

∂ε
= diffusion+ emission− absorption. (176)

The second and third terms in the left hand side of Eq.(176) express the time evolution of the spectral energy density

resulting from: (1) the radiation advection and comression with the background, which moves with the velocity, u; as

well as (2) the photon systematic blue (red) shift in the convergent (divergent) motions, which is analogous to the first

order Fermi acceleration of chanrged particles in a moving plasma with the frozen in magnetic field. Herwith γR = 4/3

is the adiabat index of a relativistic (photon) gas. The processes described by the symbolic terms in the right hand side

of Eq.(176) are described below.

A set of multi-group equations may be indroduced when we choose a set of frequency groups. Here we enu-

merate groups with the index, g = 1,G. The interval of the photon energies, relating to the gth group is denoted as

[εg−1/2,εg+1/2]. The discrete set of unknowns, Eg, is introduced in terms of the integrals of the spectral energy density

of the frequency group interval:

Eg =
∫

εg+1/2

εg−1/2

Eε dε. (177)

Note that according to Eqs.(175,177)

E = ∑
g

Eg. (178)

Although some of the formulae below are not sensitive to the choice of the group set, here we specify the bound-

aries of the frequency groups to be such that the frequency logarithm is equally spaced (rather than the frequency

itself):

log(εg+1/2)− log(εg−1/2) = ∆(logε) = const. (179)

Note that as long as the number of groups, G, tends to infinity, the ratio Eg/∆(logε) tends to the local value of εEε ,

rather than to Eε . Therefore, the grequency integrals on the equally spaced logarithmic frequency grid allow us to

approximate not a spectral energy density, but its product by the photon energy:

Eg

∆(logε)
≈ εEε . (180)

Now we can integrate Eq.(176) to arrive at the desired set of the multigroup equations:

∂Eq

∂ t
+ ∇ · (uEg)+(γR−1)(∇ ·u)Eg +

+ [−(γR−1)(∇ ·u)]
[
εg+1/2Eε(εg+1/2)− εg−1/2Eε(εg−1/2)

]
=

=
∫

εg+1/2

εg−1/2

(diffusion+ emission− absorption)dε. (181)
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If the number of frequency groups, G is sufficiently large, we employ the approximation as in Eq.(180), which allows

us to close Eq.(181) in the following form:

∂Eq

∂ t
+ ∇ · (uEg)+(γR−1)(∇ ·u)Eg +

−(γR−1)(∇ ·u)
∆(logε)

×

×
[
Eg+1/2−Eg−1/2)

]
=
∫

εg+1/2

εg−1/2

(diffusion+ emission− absorption)dε. (182)

where the values Eg±1/2 should be interpolated from the mesh-centered values Eg towards the frequency values corre-

sponding to the inter-group boundary.

Note that we arrived to difference-differential equation, with the left-hand side including: (1) the conservative

advection of the radiation energy density with the velocity u; the work done by the radiation pressure Pg = (γR−1)Eg;

(3) and, as a new element, a linear conservative advection with respect to the log-frequency coordinate. The flux-to-

control-volume ratio for the latter effect equals

Fg−1/2 =−(γR−1)(∇ ·u)Eg−1/2/∆(logε).

3.5.6.2 Absorption, emission and stimulated emission

An account of the stimuated emission is not less important in the context of the multi-group radiation diffusion than

the use of the locat termodynamic equailibrium assumption. As long as the stimulated emission is not often discussed

in books regarding the diffisive radiation transport, the code developer may meet a problem while bridging from the

absorption coefficient, aε , which is calculated from single-photon diagrams of Quantum ElectroDynamics (QED),

describing an absorption of a single photon, to the absorption coefficient which is to be used in the radiation trasport

simulations. Below we follow Zeldovich and Raizer [1966], in which this subject is presented quite transparently.

Consider a part of the radiation spectrum, of a small width of ∆ε , about the photon energy, ε , which is resonant

with some bound-bound transition, that is

ε = EE −EA, (183)

where EA and EE are some energy states of an atom (or ion, below we refer the system in these states to as an Emitter

or an Absorber). For the sake of simplicity, assume for a while that the degeneracy (multiplicity) is equal to one for

both upper and lower level:

gE = 1, gA = 1,

the use of the same denotation for the degeneracy as for the group index should not confuse the reader.

Assume there is no photon in the initial state. The only radiation process which can occur in this case is the

spontaneous emission. Introduce the probability, dwp/do, for the spontaneous emission from a single emitter, into

the element of a solid andgle, with a given polarization of the photon, p, per a unit of time. The total spontaneous

emission from the unit of volume is, hence,

NE
dwp

do
do,

where NE,A are the abundancies of the emitters and the absorbers correspondingly. The contribution from the sponta-

neous emission to Eq.(177) should have an extra factor of 4π (due to the integration over the photon directions) times

2 (summation by polarizations) times ε (an emitted energy per a photon) divided by ∆ε .
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Now assume that there are Np photons in the considered unit volume of plasma, which are in the same as the

emitted photon. The rules to express the probability of stimulated emission and absorption may be found in any

textbook on QED, particularly, we follow Berestetskii et al. [1982]. The probability of a total emission (spontaneous

plus stimilated) equals

(1+Np)
dwp

do
while the number of the absorbed photons from the same photon state, per an absorber, equals

(1+Np)
dwp

do

On integrating the total absorbtion and emission by do and suming the result up by polarizations, we arrive at the

following expression for the emission and absoption terms in Eq.(177):

emission− absortion =
8πε

∆ε

dwp

do
(NE(1+Np)−NANp)

Now we may abandon the assumption about non-degeneracy of the emeitter and absorber states. The extra freedom of

the ssytem in its final state to occupy any of g f final states simply multiplies the transition probability by a factor of

g f . Properly applying the factors g f = gE and g f = gA, we find:

emission− absortion =
8πε

∆ε

dwp

do
(NEgA(1+Np)−NAgENp).

The population of the photon state, Np, may be related to the spectral energy density. A radiation energy in the

unit volume within the interval of the photon energies, dε , may be written as Eε dε . The same energy may be obtained

if we multiply 2Npε (the factor of two accounts for two polarizations of the photon) by the number of photon states

within dε . In the unit volume the number of photon states per the pase volume of dkxdkydkz equals dkxdkydkz/(2π)3,

with kx, ky, kz being the three components of the wave vector. The number of photon states per the interval of dk is,

hence, 4πk2dk/(2π)3 = 4πε2dε/(hc)3. We find:

Eε =
8πNpε3

h3c3 ,

and

emission− absorption = caε

[
NEgA

NAgE

(
8πε3

h3c3 +Eε

)
−Eε

]
. (184)

where the absorption coefficient is introduced (the radiation energy dissipation per a unit of length), which is related

to the emission probability as follows:

aε =
h3c2NAgE

8πε2
dwp

do∆ε
. (185)

Under the condition of a local thermodynamic equilibrium, the partition function of atoms and ions in different

charge and energy states is governed by the Boltzmann statistics, so that the abundance of each excited level is pro-

portianal to its mutiplicity and to the Boltzbann factor, exp(−E/(kBT )). Therefore, under these circumstances, using

Eq.(183), we find

NE,A ∝ gE,A exp[−EE,A/(kBT )],
NEgA

NAgE
= exp

[
EA−EE

kBT

]
= exp[− ε

kBT
]
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and

emission− absorption = ca′ε

(
8π

h3c3
ε3

exp[ε/(kBT )]−1
−Eε

)
. (186)

where the effective absorption coefficient, a′ε , is indroduced, which is corrected to account for stimulated emission:

a′ε = aε

(
1− exp

[
− ε

kBT

])
(187)

Following Zeldovich and Raizer [1966] we can make now two important conclusions. First, the assoption coefficient

to be used in simulationg the radiation transport should be corrected for the stimulated emission, by means of applying

a simple correction factor. Second, the spontaneous emission from a plasma with the equilibrium distribution over the

energy states is related to the corrected absorption coefficient in sunch a way that their ratio,

E(Pl)
ε (T,ε) =

8π

h3c3
ε3

exp[ε/(kBT )]−1
, (188)

is the spectral energy density distribution of the black body radiation (the Planckian). We will also apply it in a

normalized form as follows:

E(Pl)
ε (T,ε) = αT 4 15

π4
x3

exp(x)−1
1

kBT
, α =

8π5k4
B

15h3c3 , x =
ε

kBT
. (189)

The spectral function in (188) is normalized by a unity:∫
∞

0

15
π4

x3

exp(x)−1
dε

kBT
=

15
π4

∫
∞

0

x3dx
exp(x)−1

= 1,

about the intregrals like this see §58 in Landau and Lifshitz [1980]. Therefore the total energy density in the Planck

spectrum equals αT 4, as it should.

3.5.6.3 Contributions to Opacity: Photoionization and Photorecombination, Effect of the Fermi Statistics.

The formula for the photoionization cross-section from atom (ion) in the charge state, ζ , and with the electron config-

uration, i, reads:

σ
ion
ζ ,i→ζ+1, j = σ0

wη nη

(ζ +1)2

(
Ei j

hν

)3

. (190)

Here

σ0 =
64π

3
√

3
αa2

0 ≈ 7.9 ·10−22[m2], (191)

is the near-threshold (Ei j = hν) semi-classical cross-section of the photoionization of the hydrogen atom from the

ground state (ζ = 0, wη = 1, nη = 1), which may be found in Zeldovich and Raizer [1966]

α =
e2

h̄c
≈ 1/137.04 (192)

is a fine structure constant, and

a0 =
h̄2

mee2 ≈ 0.5 ·10−10[m] (193)

is the Bohr radius. Eqs.(192,193) are only valid in CGSE system of units, however, with the known numerical values

for them all the other formulae become insensitive to the choice of units. hν is the energy of the photon, which is

absorbed in the course of the photoionization. It should exceed the transition energy,

hν ≥ Ei j. (194)
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The transition energy equals:

Ei j = Iζ −Eζ ,i +Eζ+1, j, (195)

where the excitation energy, Eζ ,i ≥ 0 is introduced, which is the non-negative difference between the energy of the

given electron configuration with respect to the ground state energy for the atom (ion) with the charge number equal

to ζ .

We consider only the transition to states j, such that the electron confiruration in these states are obtained from the

initial configuration, i, by removing a single electron from η th electron orbit. wη and nη in Eq.(190) mean the number

of electron on this orbit and its principal quantum number correspondingly.

However, if the photoionization occurs in a plasma and the effects of the Fermi- statistics in this plasma are not

negligible, Eq.(190) should be revisited. Recall, that the probabilities of the photon absorption processes in Quantum

ElectroDynamics (QED) are calculated as follows (see Berestetskii et al. [1982]): (1) first, the matrix element of

perturbation is calculated using the wave functions of bound and free electrons in initial and final states; (2) and then

the matrix element should be integrated over all possible value of the free electron momentum, p, as long as there is

a free electron in the final state. In this integration the number of free electron states per the unit of space volume is

introduced as follows:

Np = 2
dV d3p
(2π h̄)3 . (196)

To account for the Fermi statistics effect on the electron gas we should note that: (1) the calculation of the matrix

element does not change, because in any case the wave function for a free electron is a plane wave; (2) however, the

way to calculate the number of states of free electrons change specifically. Specifically, we find that among the states

as in Eq.(196) some places are already occupied, with the occupation numbers equal to 1/(exp[(εe−µ)/(kBT )]+1)

(see Landau and Lifshitz [1980]). Here µ is a chemical potential of a free electron gas and ε(p) is its non-relativistic

kinetic energy of the electron. With this account, the actual number of free electron states is

Ncorr
p = 2

dV d3pe

(2π h̄)3

(
1− 1

exp[ εe−µ

kBT ]+1

)
= Np

exp[ εe−µ

kBT ]

exp[ εe−µ

kBT ]+1
. (197)

Therefore, the corrected cross-section becomes:

σ
corr,ion
ζ ,i→ζ+1, j = σ

ion
ζ ,i→ζ+1, j

exp[ εe−µ

kBT ]

exp[ εe−µ

kBT ]+1
. (198)

The electron energy here is related to the photon energy, hν , via the conservation law:

εe = hν−Ei j (199)

The contribution from the bound-free transition to the absorption coefficient (not yet corrected for the stimulated

emission) may be now written in terms of the corrected cross-section:

κ
b f
ν = σ0 ∑

ζ ,i, j
Nζ ,i

wη nη

(ζ +1)2

(
Ei j

hν

)3 exp[ hν−Ei j−µ

kBT ]

exp[ hν−Ei j−µ

kBT ]+1
, (200)

where Nζ ,i is the concentration of ions with the given electron configuration.
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Now, the cross-section of a photorecombination of an electron on a collision with the ion in the state, ζ + 1, j is

related to the cross-section as in Eq.(190) in the following way:

σ
rec
ζ+1, j→ζ ,i =

gζ ,i

gζ+1. j

(hν)2

2mec2
1
εe

σ
ion
ζ ,i→ζ+1, j =

gζ ,i p2
p

gζ+1. j p2
e

σ
ion
ζ ,i→ζ+1, j, (201)

where pp = εp/c and εp = hν are the momentum and the energy of a photon correspondingly.

The rule as in Eq.(201) expresses the so-called cross-invariance property of all QED processes, which claims the

possibility to relate the probability of the direct and inverse processes if we accordingly account for the weights of the

initial and final states. This property comes from the point that the matrix elements for the direct and reverse processes

are exactly the same, the difference in the cross-sesctions occurs when the matrix element is integrated over the final

states, which are different, because the final and initial states in the cross-invariant processes are changed by places.

We emphasize, that the relationship as in Eq.(201) holds with the uncorrected cross-section σ ion
ζ ,i→ζ+1, j, because it is

based on the uncorrected statistical weight of free electron as in Eq.(196), which results in the multiplier, p2
e , in the

denominator of (201). If we account the correcting factors both in σ ion
ζ ,i→ζ+1, j and in (196) these factors cancel each

other and the expression for σ rec
ζ+1, j→ζ ,i keeps unchanged.

Integrate (pe/me)σ
rec
ζ+1, j→ζ ,i with the distribution function, fp, of an ideal Fermi gas of electrons,

fpd3pe =
2

exp[ εe−µ

kBT ]+1
d3pe

(2π h̄)3 , (202)

and represent the result of integration by the electron momentum directions in the following form.∫ 8π

c2h3 σ0
gζ ,i

gζ+1. j

wη nη

(ζ +1)2
1

hν

E3
i jdεe

exp[ εe−µ

kBT ]+1
. (203)

Now discuss the physical meaning of the integrand as in (203). In accordance with Eq.(199), dεe = dεp = d(hν).

Hence the integrand in (203) may be interpreted as the probability of emission, per a unit time interval, from an ion in

the given state, with the emitted photon being within the energy interval d(hν) = d(Ei j +εe). Once been multiplied by

(hν), this becomes the emitted energy and once multipled by the emitters density, Nζ+1, j, it becomes the volumetric

emissivity due to recombination, per a unity interval of the photon energies, Eε :

E b f
ε =

8π

c2h3 σ0 ∑
ζ ,i, j

Nζ+1, j
gζ ,i

gζ+1. j

wη nη

(ζ +1)2

E3
i j

exp[ hν−Ei j−µ

kBT ]+1
. (204)

Discuss briefly the interaction of plasma with the euqilibrium black-body radiation. The absroption of the black-

body radiation (again, our Eq.(200) is not yet corrected for a stimulated emission) balances the emissivity, if the

following condition is satisfied:

E b f
ε =

8π(hν)3 exp[−(hν)/(kBT )]
c2h3 κ

b f . (205)

Comparing this with Eqs.(200,204), we find that the condition is satisfied, if:

gζ ,iNζ+1, j

gζ+1. jNζ .i
= exp[

−Ei j−µ

kBT
] = exp[

−Iζ +Eζ ,i−Eζ+1, j−µ

kBT
]. (206)

This is exactly the expression relating the populations of the electron states in ions, which are in a thermodynamic

equilibrium with a Fermi gas of electrons (see Part 1).
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Figure 41: The results of simple opacity model, analogous to that used in the IONMIX code, for low-Z elements:

beryllium (the left panel) and aluminum (the right panel). For comparison the SESAME table data are also provided

3.5.6.4 Contributions to Opacity: Free-Free Transitions

The analisys of free-free absorption is mostly based on the same considerations as that for bound-free absorption. The

distinction is in the use of the Fermi-Dirac distribution function not only for a free electron in the final state (what we

did in the previous section) but also for the electron in the initial state.

The emission from an electron having the velocity, vE (again the subscript E means ”emitter”, subscript A means

”absorber”), is given well known formula:

dEε

dt
=

32π2e6

3
√

3c3hm2
evE

Ne ∑
ζ

Nζ ζ
2G f f (207)

The way to account for the effect of the Fermi statistics on the population of free electron states and the absorption-

emission probability is analogous to that discussed above for the bound-free transitions

3.5.6.5 The main Contribution to the Opacity: Bound-Bound Transitions.

The main contribution to the opacity of plasmas of mid-Z and high-Z ions comes from “bound-bound” transitions

between different excited levels of atoms and ions. For low-Z elements for which the number of such levels is moderate

and the emission lines can be resolved in the emission spectrum, we successfully used the model analogous to that used

in the IONMIX code [J.J.MacFarlane, 1989]. In Fig. 41 we compare the results obtained with this (over-simplified)

model and compare the results with SESAME tables. The agreement is good for Beryllium (the left panel) but not so

good for Aluminum. For Xenon with Z=54, which radiative property was of a major importance for the project, the

opacity data obtained within the framework of simplified model with sparse atomic data present in literature cannot

be relied upon. Surprisingly, the attempts to use the opacity data from other sources, such as PROPACEOS, did not

provide us with any better data.

The opacity data for Xenon were provided by the ARTEP group. They are calculated within the framework of

the STA model (see A.Bar-Shalom et al. [1989]). In Fig. 42, the old CRASH are compared to the STA opacities.

The STA opacities are close to the INFERNO [Liberman, 1979] opacities. In the relevant ranges of xenon densities
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Figure 42: Comparison of the old and new (STA) CRASH opacities for xenon at a density of ρ = 0.011g/cm3 and

temperature of 49.99eV. The STA opacities are close to the INFERNO opacities. In the CRASH relevant photon energy

range indicated by the gray box, the STA opacities are significantly higher than the old CRASH xenon opacities.

and temperatures, STA produces higher opacity values than we find by running the CRASH opacity model using the

limited available atomic data, e.g. for xenon at a temperature of 49.99eV and a density ρ = 0.011g/cm3 the STA

opacities around photon energies of 100eV are three orders of magnitude larger. The STA Fe and Ni opacities have

recently been compared with other models in Gilles and et al [2011].

3.5.7 Numerical setup of the shock tube experiment

In the baseline experiment of CRASH, a radiative shock is created by means of ten laser beams from the Omega laser

facility. The resulting laser pulse irradiates a 20 µm beryllium target with approximately 3.8kJ laser light of 0.35 µm

wavelength for the duration of 1ns. This first ablates the beryllium, generates a shock, and then accelerates the plasma

to over 100km/s. The front of this plasma drives a shock through a xenon-filled polyimide tube with an initial shock

velocity of 200km/s, see also Drake et al. [2011]. In the shocked xenon region, the shock-heated ions exchange

energy with the electrons so that they are also heated, after which both temperatures drop through a radiative cooling

layer [Reighard et al., 2007]. The emitted photons from this layer can propagate ahead of the shock and preheat the

unshocked xenon. A fraction of this radiation also expands sideways and heats the tube wall, leading to ablation of

the polyimide, which in turn drives a wall shock into the xenon [Doss et al., 2009]. In this section, we will describe in

more detail how we numerically setup this experiment with our new laser package.

The simulations in this section have been performed with the new 3-D laser package described in 3.5.1.1. The nu-

merical set-up is as follows: A laser pulse of 0.35 µm wavelength irradiates a 20 µm thick beryllium disk for 1ns. The

corresponding critical electron number density, below which all light is absorbed, is 8.9×1021 cm−3. In the radiative
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Figure 43: Details of the axi-symmetric radiative shock tube target.

shock experiments, the total laser energy deposition is typically 3.8kJ, but in our simulations we have to scale this down

to arrive at similar results in the shock position. This laser scale factor accounts for that part of the energy for which the

laser-plasma interactions cause reflection or absorption into distributions of particles that do not effectively generate

ablation. These laser-plasma processes include wave-wave instabilities and related phenomena [Kruer, 2001]. In these

runs, we use an energy of 2.7kJ. The laser spot size is 820 µm full width half maximum (FWHM) diameter. In our ap-

plication, the Omega laser pulse can be represented by 10 beams with a circular cross-section and the following angles

with respect to the shock tube axis: 10.13 ◦,10.49 ◦,31.37 ◦,31.6 ◦,31.71 ◦,31.94 ◦,41.96 ◦,42.04 ◦,42.37 ◦,50.62 ◦. For

computational efficiency, this is modeled using 4 beams with the power per beam weighted by the number of beams

approximately at that angle: one beam at 50.6 ◦, three beams at 42.0 ◦, four beams at 31.7 ◦, and two beams at 10.2 ◦.

The laser profiles are spatially chosen as super-Gaussian of the order 4.2 and the time profile is split in a 100ps linear

ramp-up phase, 0.8ns with constant power, and a 100ps linear decay time. Each beam is discretized with 900 by 4

rays for the radial and angular coordinates of the beam cross-section. The radial beam domain size is up to 1.5 times

the FWHM beam radius of 410 µm, while the angular direction is limited to half the domain [0,π] due to symmetry

considerations. The resulting beam resolution is sufficiently high to obtain a smooth laser heating profile, but also as

coarse as possible for computational speed.

3.5.8 Radiative shocks in straight tubes

We use the CRASH code [van der Holst et al., 2011] to simulate both the laser energy deposition and the radiative

shock propagation. This code solves the multi-material radiation-hydrodynamic equations in an operator split fashion.

For each time step, we split the dynamical equations in the following way: (1) The hydrodynamic equations, level sets,

and advection of radiation groups are explicitly solved with a shock capturing scheme. We typically use the HLLE

scheme with a Courant–Friedrichs–Lewy (CFL) number of 0.8 and the generalized Koren limiter with β = 3/2. (2)

Optionally we add a frequency advection in the radiation group energies caused by fluid compression. In these runs,
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this is switched off. (3) The contribution of the laser heating is explicitly added to the electron internal energy. In

our code this energy is split between electron pressure and an extra internal energy to account for EOS corrections

like the ionization, excitation, and Coulomb interactions of partially ionized ion-electron plasma. (4) The radiation

diffusion, heat conduction, and energy exchanges are solved implicitly. We use a multigroup flux-limited radiation

diffusion method in which the flux limiter is the square-root flux limiter [Morel, 2000]. For the electron thermal heat

conduction, we use the so-called threshold model [Drake, 2006, van der Holst et al., 2011], for which the heat flux

limiter has a value of 0.06. We have made several improvements to the implicit solver including the implementation of

the HYPRE preconditioner, to make the solutions more accurate. The results demonstrated below have been produced

with these new code changes.

The photon energy range in our multigroup radiation model is 0.1eV – 20keV, which is divided in 30 groups.

These groups are non-logarithmically distributed to improve the accuracy for absorption edges in the used materi-

als. In our code, the frequency-dependent absorption coefficients are calculated internally and include the effects of

Bremsstrahlung, photo-ionization of the outermost electrons, and bound-bound transitions with spectral line broaden-

ing. Multigroup opacities are then determined by averaging the absorption coefficients over the photon energy groups.

The resulting specific Rosseland and Planck mean opacities for all groups are stored in lookup tables. For xenon

opacities, our initially available atomic model was too incomplete, so that the methods used by our code produced

substantially inaccurate opacities. We therefore use for xenon high quality opacity tables calculated with the super-

transition-arrays (STA) model [Bar-Shalom et al., 1989, 1999, Busquet et al., 2010]. In Fig. 42, the old CRASH are

compared to the STA opacities. The STA opacities are close to the INFERNO [Liberman, 1979] opacities. In the

relevant ranges of xenon densities and temperatures, STA produces higher opacity values than we find by running

the CRASH opacity model using the limited available atomic data, e.g. for xenon at a temperature of 49.99eV and

a density ρ = 0.011g/cm3 the STA opacities around photon energies of 100eV are three orders of magnitude larger.

The STA Fe and Ni opacities have recently been compared with other models in Gilles and et al [2011].

The shock tube is defined on a 2-D axial symmetric computational domain. The size of the domain is −550 <

x < 3850 along the tube and the radius is limited to 0 < r < 500, with all distances measured in microns. The

base level grid is decomposed of 165× 15 grid blocks of 8× 8 mesh cells for the x and r directions, respectively.

Two levels of adaptive mesh refinement are applied, so that the effective grid resolution is 5280× 480 grid cells of

approximately 0.8 µm by 1 µm. The grid refinement is applied at all interfaces involving xenon or gold. We also

apply grid refinement when the xenon mass density exceeds 0.02g/cm3 in order to resolve the xenon shock front, the

electron-ion equilibration zone, and the radiative cooling layer in the shocked xenon. In addition, all beryllium to the

right of x =−5 µm is mesh refined during the laser heating. All mentioned grid refinements are applied when any of

the mentioned criteria is met in the mesh as well as ghost cells. Note that the effective cell size of 0.8 µm means that

there are 25 cells in the x-direction to span the beryllium disk thickness. This turns out to be sufficient to accurately

describe the beryllium ablation and shock breakout.

The boundary conditions at the symmetry axis r = 0 are reflective, while we use at all other boundaries extrapo-

lation with zero gradient. However, for the radiation groups, we use a zero incoming flux boundary condition at the

outer boundaries, i.e. all radiation leaving the computational domain will not return back.

The simulated laser energy deposition and radiative shock evolution is modeled from 0 to 18ns. During the first

200ps the time step is reduced from about 3×10−17 s at the very beginning of the simulation and gradually increases

towards the end of the 200ps to a time step based on a CFL of 0.8. The increase (or decrease) in time step is controlled
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Figure 44: The mass density (left panels), electron temperature (middle panels) and total plasma pressure (right

panels) as a function of the x and r coordinates in microns at time t = 200ps (top row) and near the shock breakout

time t = 400ps (bottom row).

by the change in the extra internal energy that accounts for the ionization, excitation, and Coulomb interactions. From

200ps to 18ns, the time step is set by the default CFL number. This computation was performed on 100 processors of

the FLUX supercomputer at the University of Michigan using dual socket six-core Intel Core I7 CPU nodes connected

with infiniband and took 39.5hours. This includes 10hours and 50minutes for the laser heating, 21 hours for the

Krylov solver, and 6hours for the setup time of the HYPRE BoomerAMG preconditioner.

In Fig. 44 we show the early time response to the laser heating. The top row is for the density, electron temperature

and total plasma pressure at time t = 0.2ns. Here one can see the early ablation of the beryllium disk, initially located

between x = 0 and x = 20 µm. The bottom row shows the same but at time t = 0.4ns. The region to the left of the

beryllium disk is the laser corona. This region can be split in three main regions [Drake, 2006]: (1) The leftmost low

density region is the so-called expansion region in which the plasma expands, but hardly absorbs the laser light. (2)

Between the expansion region and the critical density is the absorption region where the laser energy deposition takes

place. (3) Between the critical density and the not yet ablated beryllium disk is the transport region in which electron

heat conduction transports heat from the low density and hot laser corona to the high density and low temperature

beryllium target. It is in this region that the classical Spitzer-Härm (SH) formalism for heat transport overestimates the

heat flux for the steep temperature gradients. The artificial heat flux limiter is used to prevent the SH heat conduction

from exceeding the free-streaming heat flux (see also Drake [2006]).

The resulting ablation pressure of approximately 5000GPa drives a shock through the beryllium disk. At t ≈ 400ps

the shock has reached the right boundary of the beryllium disk. This is the shock breakout time. After this time the

high pressure due to the laser heating will further accelerate the shocked plasma. In a forthcoming paper, we will

present a more detailed analysis and compare the simulated shock breakout with experiments.

The shock structure at 13ns is shown in Fig. 45. In the top left panel the materials are displayed: xenon (black),
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Figure 45: The radiative shock structure at 13ns. The colors in top-left panel indicate the materials: xenon (black),

beryllium (blue), gold (yellow), acrylic (red) and polyimide (green), while the black lines indicate grid resolution

changes.
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were produced with an older CRASH code version and reported in Drake et al. [2011].
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Figure 47: The mass density at 13ns as a function of x and r in microns. This simulation was performed using the new

laser package and the old CRASH xenon opacities instead of the STA opacities in Fig. 45.

beryllium (blue), gold (yellow), acrylic (red), polyimide (green). The two levels of dynamic mesh refinement are

indicated by the black lines. The beryllium moves through the polyimide tube and drives like a piston a shock into the

xenon. The compressed xenon between this shock front and the beryllium is found around x = 1850 µm in the mass

density plot of the top right panel. The plot also shows, via a black line, where the material interfaces are. The physics

described in the remaining panels is similar to that in previous studies, see van der Holst et al. [2012]. We repeat here

only the main results for completeness. The shock velocity at 13ns has gradually reduced from the early velocity of

200km/s to about 150km/s. The bottom right panel shows the pressure jump at the shock, while the bottom left panel

shows that the ions are shock heated. In the compressed xenon region this leads first to an electron-ion temperature

equilibration due to Coulomb collisions, resulting in a cooling of the ions and heating of the electrons. Further to the

left in the compressed xenon region, the electrons cool down by emitting photons. This is called the radiative cooling

layer [Reighard et al., 2007]. The emitted photons can propagate ahead of the shock and produce a radiative precursor

as depicted in the radiation temperature panel. The sideways propagation of the radiation heats the polyimide tube.

The ablation pressure of the polyimide at x≈ 2000 µm in the pressure plot then drives a wall shock radially inward as

is visible at the same x location in the density and radial velocity plots.

The main goal of this section is to demonstrate that with the new improved physics fidelity and numerical schemes

since the CRASH code release of van der Holst et al. [2011], the radiative shock simulations in straight tubes are no
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Figure 48: (left panel) Simulated radiograph image at 13ns. (Right panel) Experimental X-ray radiograph from Doss

et al. [2010]. The experimental and simulated set-up is not identical and hence shock positions are different.

longer susceptible to distortion of the dense xenon layer on axis. In Fig. 46, we have reproduced the axi-symmetric

and straight shock tube simulation results reported in Drake et al. [2011]. This figure shows the mass density as a

function x and r in microns. A significant shock distortion can be seen at (x,r)≈ (1950,0) with the old CRASH code,

while in the new code the primary shock front in Fig. 45 is nearly straight and only slightly slanted, but does not

display the unwanted protrusion of the shock as shown in Drake et al. [2011]. To demonstrate the improvement due to

the STA opacities, we have performed a similar simulation as in Fig. 45 with the CRASH laser package, but using the

old xenon opacities. The dense xenon layer is still at x ≈ 1850 µm. Note that there is in this case still a small shock

protusion present on axis. This demonstrates that besides a new laser package also improved xenon opacities were

required to improve the quality of the shock tube simulations.

From the radiative shock tube experiments we obtain backlit-pinhole radiograph images [Doss et al., 2009]. These

images are produced by transmitting 5.18keV through the CRASH target and in essence show regions of dense xenon.

From these images, we can then deduce the location of the primary and wall shock. With our code, we can produce

simulated X-ray radiographs, see the left panel of Fig. 48, and use such images in future code validation and uncer-

tainty quantification. The importance of the code improvements is that there is no longer dense xenon in front of the

center of the primary shock at (x,y) ≈ (1850,0)µm and hence there is no longer a dark feature ahead of the dense

xenon layer in the radiograph as in the experimentally obtained radiograph in the right panel of Fig. 48.

To demonstrate that the shock is also correct at later times, the density and radial velocity at time 18ns is shown

in Fig. 49. The primary shock has reached x ≈ 2500 µm and is somewhat more slanted. The radially inward moving

wall shock is at the far right in these panels.
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Figure 49: The shock structure at 18 ns.

3.5.8.1 Switching the AMR code in BATSRUS/CRASH completely to BATL

The Block Adaptive Grid Library (BATL) was developed in the CRASH project because the original adaptive mesh

refinement (AMR) code in BATS-R-US did not meet the demands of the new project: it could not do AMR in 2D

and the dynamic AMR algorithm was rather inefficient. We developed BATL from scratch in about a year to the point

that it became fully usable for the CRASH project. Unlike the original AMR code, BATL is a fully object oriented,

fully verified and self-contained library. In the last year we completed the transition to BATL, and completely replaced

the original AMR code with it. This required implementation of generalized coordinates into BATL, new AMR

algorithms, and modification of a large fraction of the BATS-R-US/CRASH code. While this work does not have a

significant affect on the current CRASH project, it has far reaching consequences for future development of our code.

Bart van der Holst has recently demonstrated good parallel scaling of CRASH with the BATL library from 1 all the

way to 260,000 cores on the Jaguar CRAY system at ORNL. Scaling results are shown in Figure 50.
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Figure 50: Scaling of CRASH on Jaguar

4 Code Quality Assurance

4.1 Code Verification

To test the CRASH as well as the BATS-R-US and SWMF codes, we have implemented numerous tests. These tests

are subdivided in two categories: functionality tests and verification tests. Both test suites are performed automatically

and return pass or fail messages depending on whether or not certain predefined tolerance criteria are met. This

automated testing process provides software quality confidence especially when used in combination with a software

version control system like CVS (Concurrent Versions System) to recover previous correctly performing code.

The functionality tests are performed nightly on several computer platforms with different compilers and numbers

of processors. They consist of unit tests and full system tests. Unit tests are designed to test a particular unit, for

example a linear equation solver. The full system tests on the other hand, exercise the code in the way end-users will

use it for their research applications. We always try to cover as much code as possible with these tests so that we can

discover bugs and other unwanted side effects early on.

To test the correctness of the implemented algorithms we have also constructed a suite of verification tests. This

suite is executed daily on a dedicated parallel computer and runs specific simulations to quantify against analytic

and semi-analytic solutions, whenever possible. The CRASH test repository currently covers a wide range of tests

for hydrodynamics, multi-material advection methods, gray and multigroup radiation diffusion, heat conduction, to

mention a few. These are performed to test for grid and/or time convergence, as deemed necessary. We also simulate

full system laboratory experiment configurations in various geometries, dimensionality, and physics fidelity. The

results are either validated against laboratory experiments or simply used to check that the code keeps performing

these simulations as expected. Once a week, we also perform a parallel scalability test on a large parallel computer to
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verify that the code does not degrade in performance during further development of the software.

In the following sub-sections, we highlight some specific verification tests related to the implicit radiation (Section

4.1.2) and heat conduction (Section 4.1.3) solver. These tests cover both Cartesian and rz-geometry, and some of them

also involve the hydrodynamic solver. We demonstrate a 3D full system test in Section 4.1.4 and describe the parallel

scalability in Section 3.3.

4.1.1 Error Assessment

For assessment of the accuracy of the solutions in the test suites, an appropriate definition of the numerical errors has

to be defined. We use two types of errors to quantify the verification analysis: The relative L1 error is defined as

EL1 =
N

∑
α=1

∑
I
i=1 |Uαi−Vαi|

∑
I
i=1 |Vαi|

, (208)

where α = 1, . . . ,N indexes the state variables of numerical solution vector U and the reference solution V, and

i = 1, . . . , I indexes the grid cells of the entire computational domain. For test problems with smooth solutions, we will

also use the relative maximum error defined by

EL∞ =
N

∑
α=1

maxi=1,...,I |Uαi−Vαi|
maxi=1,...,I |Vαi|

. (209)

Quite often, the reference solution is defined on a grid with higher resolution than that of the numerical solution. In

that case, we first coarsen the reference solution to the resolution of the numerical solution.

4.1.2 Radiation Tests

4.1.2.1 Su-Olson Test

Su and Olson [1996] developed a one-dimensional Marshak wave test, to check the accuracy of the scheme and the

correctness of the implementation of the time-dependent non-equilibrium gray radiation diffusion model. In this test,

radiation propagates through a cold medium that is initially absent of radiation. The equations are linearized by the

choice of the specific heat of the material CV = 4aT 3 as well as by setting the Rosseland and Planck opacities to the

same uniform and time-independent constant κR = κP = κ . The cold medium is defined on a half-space of the slab

geometry 0 ≤ x < ∞. At the boundary on the left, a radiative source is specified, creating an incident radiation flux

of F in = aT 4
in, where Tin = 1keV. As time progresses, the radiation diffuses through the initially cold medium and

by energy exchange between radiation and matter, the material temperature rises. In Su and Olson [1996], a semi-

analytical solution is derived for the time evolution of the radiation energy and material temperature. We use this

solution for our verification test.

For convenience, we locate the right boundary at a finite distance x = 5 cm and impose a zero incoming radiation

flux on that boundary. We decompose the computational domain into 6 grid blocks at the base level with 10 cells

per block. Between x = 5/6 cm and x = 5/3 cm, the domain is refined by one level of AMR. During the time

evolution, radiation diffuses to the right through the resolution changes. The system is time evolved with the implicit

radiation diffusion solver by using a preconditioned conjugate gradient method until the final time 0.02 ns. The solver

steps through a series of fixed time steps of 5× 10−4 ns and we use a Crank-Nicolson approach to achieve second
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Figure 51: Material (Tmat) and radiation (Trad) temperature solution of the [Su and Olson, 1996] non-equilibrium

Marshak radiation diffusion problem obtained with the CRASH code on a non-uniform grid. The reference tempera-
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Figure 52: The relative L1 error for the Su-Olson test on a non-uniform grid.

order accurate time-integration. Note that this is possible because coefficients of the matrix to be solved are not time

dependent. The computed radiation and material temperatures at the final time are shown in Figure 51 and agree well

with the semi-analytical solution. Figure 52 shows the relative L1 error of the radiation and material teperatures

versus increasing grid resolution of the base level grid. We did not use the semi-analytical solution as the reference,

since it is difficult to get an accurate enough solution with the quadrature method as mentioned by Su and Olson

[1996]. Instead, we use a very high resolution (1920 cells) numerical reference solution obtained with the CRASH

code. Four different base level resolutions with 60, 120, 240, and 480 cells are used to demonstrate the second order

convergence. The time step is proportional to the cell size ∆x.

4.1.2.2 Lowrie’s Non-equilibrium Radiation Hydrodynamics Solutions

Lowrie and Edwards [2008] designed several shock tube problems for the non-equilibrium gray radiation diffusion

103



 
 
 
 
 

 

0.605
0.610
0.615
0.620
0.625

 

-0.01

0.00

0.01

Y

-0.01

0.00

0.01

Y

  

 

 
 
 
 
 

 

0.605
0.610
0.615
0.620
0.625

 

-0.10 -0.05 0.00 0.05 0.10

X

-0.01

0.00

0.01

Y

-0.10 -0.05 0.00 0.05 0.10

X

-0.01

0.00

0.01

Y

Figure 53: Rotated shock-tube test on a 2D AMR grid based on the Mach number 1.05 non-equilibrium gray radiation

hydrodynamic test in Lowrie and Edwards [2008]. Shown is the radiation temperature in color contour at the initial

(top panel) and final (bottom panel) times. Black crosses indicate cell centers.

coupled to the hydrodynamic equations that can be used for code verification. These solutions are planar radiative

shock waves where the material and radiation temperatures are out of equilibrium near the shock, but are assumed to

be in radiative equilibrium far from the shock. Depending on the Mach number of the pre-shock state, a wide range

of shock behavior can occur. For the CRASH test suite, we selected a few of the semi-analytic solutions from Lowrie

and Edwards [2008]. In this section we will describe the Mach 1.05 flow with uniform opacities as an example. Here

the shock is smoothed by energy exchange with the diffusive radiation. Another more challenging Mach 5 problem

with non-uniform opacities will be described in Section 4.1.3.3.

The Mach 1.05 test is performed on a 2D non-uniform grid. The initial condition is taken to be the same as the

original steady state reference solution. Since the system of equations is Galilean invariant, we can add an additional

velocity -1.05 so that the velocity on the left boundary is zero while the smoothed shock will now move to the left.

This new initial condition as well as the velocity vector are rotated by tan−1(1/2)≈ 26.56◦. This means that there is

a translational symmetry in the (−1,2) direction of the xy-plane as shown in Figure 53. The computational domain is

−0.12 < x < 0.12 by −0.02 < y < 0.02 decomposed in 3×3 grid blocks of 24×4 cells each. We apply one level of

refinement inside the region−0.04 < x < 0.04 by−0.02/3 < y < 0.02/3. The initial smoothed shock starts at the right

boundary of the refined grid and we time-evolve the solution until it reaches the resolution change on the left as shown

in Figure 53. For the boundary conditions in the x direction, we use zero radiation influx conditions for the radiation

field, while a zero gradient is applied to the remaining state variables. On the y boundaries, we apply a sheared zero

gradient in the (−1,2) direction for all variables.

The hydrodynamic equations are time evolved with the HLLE scheme with a CFL number 0.8. We use the gen-

eralized Koren limiter with β = 3/2 for the slope reconstruction. For the implicit radiation diffusion solver, we use

the GMRES iterative solver in combination with a BILU preconditioner. The specific heat is time dependent since it

depends on the density, therefore the implicit scheme is only first order accurate in time. To enable second order grid

convergence for this smooth test problem, we compensate for this by reducing the CFL number proportional to the

grid cell size, in other words ∆t ∝ ∆x2, so that second order accuracy with respect to ∆x can be achieved. We increase

the spatial resolution by each time doubling the number of grid blocks at the base level in both the x and y directions.

The convergence of the numerically obtained material and radiation temperatures along the y = 0 cut at the final

time t = 0.07 is shown in Figure 54. The solid, dotted, and dashed lines correspond to the solutions with the 3× 3,

6×6, and 12×12 base level grid blocks, respectively. The advected semi-analytical reference solution is shown as a

blue line for comparison.

To assess the order of accuracy, the grid convergence is shown in Figure 55 for the three resolutions. The relative

L1 error is calculated using the density, velocity components, and both the material and radiation temperatures. We
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Figure 54: Material (left panel) and radiation (right panel) temperatures for the Mach 1.05 radiative shock tube problem

at the final time are shown in the x-direction. The solid, dotted, and dashed lines correspond to three different grid

resolutions, respectively. The blue line is the semi-analytical reference solution of Lowrie and Edwards [2008].
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Figure 55: The relative L1 error for the Mach 1.05 non-equilibrium radiation diffusion test on a non-uniform grid.

Both non-conservative as well as conservative hydrodynamic schemes are tested.
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Figure 56: Solutions for the 1D double light front test for 4 different non-uniform grid resolutions. The radiation

energy for group 1 (left panel) enters from the left boundary, for group 2 (right panel) it enters from the right boundary.

The symbols for base resolution 80 shows one level of grid refinement for 0.1 < x < 0.2 and 0.8 < x < 0.9.

obtain second order convergence for both the conservative as well as the non-conservative (using the pressure equation

instead of the total energy) hydrodynamic schemes. The latter scheme can be used because in the Mach 1.05 test the

hydro shock is smoothed out by the interaction with the radiation.

4.1.2.3 Double Light Front

As a test for the multigroup radiation diffusion model we developed a double light front test problem. This test is

used to verify the implementation of both the group diffusion and flux limiters. At the light front, the discontinuity

in the radiation field switches on the flux limiter. This limiter is used to correct the radiation propagation speed in

the optically thin free streaming regime. With the light front test we can then check that we obtain the speed of light

propagation of the front and that the front maintains as much as possible the initial discontinuity.

This test is constructed as follows: We use a 1D computational domain of the size of 1 m in the x-direction. On

this domain, we initialize the two radiation group energy densities Eg (g = 1,2) with a very small, positive number to

avoid division by zero in the flux limiter. Also the Rosseland mean opacities are set to a small number corresponding to

strong radiation diffusion, while the Planck mean opacities are set to zero corresponding to an optically thin medium.

The radiation energy density of the first group enters from the left boundary by applying a fixed boundary condition

with value one in arbitrary units. On the right boundary this group is extrapolated with zero gradient. Note that these

are the proper boundary conditions in the free-streaming limit and not the diffusive flux boundary conditions described

in Section 3.2.4. The second radiation group enters from the right boundary with density one, and it is extrapolated

with zero gradient at the left boundary. We time evolve both groups for 0.5 m/c seconds. The analytic solution is then

two discontinuities that have reached x = 0.5 m, since both fronts propagate with the speed of light c.

The computational domain is non-uniform. In the coarsest resolution, there are 10 grid blocks of 4 cells each at the

base level. Inside the regions 0.1 < x < 0.2 and 0.8 < x < 0.9, we use one level of refinement. The total time evolution

is divided into 400 fixed time steps. We use GMRES for the radiation diffusion solver in combination with a BILU

preconditioner. For the grid convergence, we reduce the fixed time step quadratically with grid resolution. This time

step reduction mimics second order discretization in time. In Figure 56, the two group energy densities are shown for

the base level grid resolutions 40, 80, 160, and 320. Clearly, with increasing number of cells, the solution converges

towards the reference discontinuous fronts at x = 0.5.
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Figure 57: Relative L1 error for the double light front test on a non-uniform grid. The test is performed for the x, y,

and z directions.

In Figure 57, the grid convergence is shown for the four resolutions. The relative L1 error is calculated using

both radiation group energy densities and compared to the analytical reference solution with the discontinuities at

x = 0.5. In Gittings [2008], it was stated that for a second order difference scheme the convergence rate for a contact

discontinuity is 2/3. Indeed, we find this type of convergence rate, due to numerical diffusion of the discontinuities,

for the light front test. We have also performed the tests in the y and z directions to further verify the implementation.

4.1.2.4 Relaxation of Radiation Energy Test

This test is designed to check the relaxation rate between material and radiation. The energy exchange between the

material and radiation groups can be written as

CV
∂T
∂ t

=
G

∑
g=1

σg(Eg−Bg), (210)

∂Eg

∂ t
= σg(Bg−Eg). (211)

For a single radiation group, an analytic expression can be found to describe the relaxation in time. However, for an

arbitrary number of groups, a time dependent analytic solution is less obvious, except for some rather artificial cases.

Here we make the assumption of an extremely large value of the specific heat CV to make analysis more tractable.

In this case, the material temperature is time independent, so that Bg is likewise time independent. The solution is

then Eg = Bg(1− e−σgt) assuming Eg(t = 0) = 0 initially. At time t = 1/σg, the group radiation energy density is

Eg = Bg(1−1/e). Note that this test only needs one computational mesh cell in the spatial domain. We set T = 1 keV

and the resulting Planckian spectrum, defined by Bg, is depicted by the dotted line in the left panel of Figure 58.

We use 80 groups logarithmically distributed over the photon energy domain in the range of 0.1 eV to 20 keV. The

computed Eg at time t = 1/σg are shown as + points. For the simulation we used the GMRES iterative solver and

the Crank-Nicolson scheme. To assess the error, we repeated the test with time steps of 1/20, 1/40, and 1/80 of the

simulation time. The second order convergence rate is demonstrated in the right panel of Figure 58.
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Figure 58: The relaxation of radiation energy test for 80 groups. Left panel is for the time independent spectrum Bg

(dotted line) and the group radiation energy solution Eg at time 1/σg (+ points) versus the photon energies after 80

time steps. The analytical reference solution is shown as a solid line. Right panel shows the relative maximum error

for 20, 40, and 80 time steps demonstrating second order convergence rate.

4.1.3 Heat Conduction Tests

4.1.3.1 Uniform Heat Conduction in rz-geometry

This test is designed to verify the implicit heat conduction solver in rz-geometry. It tests the time evolution of the

temperature profile using uniform and time independent heat conductivity. In rz-geometry, the equation of the electron

temperature for purely heat conductive plasma follows

CVe
∂Te

∂ t
=

1
r

∂

∂ r

(
rCe

∂Te

∂ r

)
+

∂

∂ z

(
Ce

∂Te

∂ z

)
. (212)

We set the electron specific heat CVe = 1 and assume electron conductivity Ce to be constant. In this case, a solution

can be written as a product of a Gaussian profile in the z-direction and an elevated Bessel function J0 in the r-direction

[Arfken, 1985]:

Te = Tmin +T0
1√

4πCet
e−

z2
4Cet J0(br)e−b2Cet , (213)

where b ≈ 3.8317 is the first root of the derivative of J0(r). We select the following values for the input parameters:

Tmin = 3, T0 = 10, and Ce = 0.1 in dimensionless units.

The computational domain is−3 < z < 3 and 0 < r < 1 discretized with 3×3 grid blocks of 30×30 cells each. In

the region−1< z< 1 and 1/3< r < 2/3, we apply one level of mesh refinement. We impose a symmetry condition for

the electron temperature on the axis. On all other boundaries the electron temperature is fixed to the time dependent

reference solution. We time evolve this heat conduction problem with a preconditioned conjugate gradient method

from time t = 1 to the final time at t = 1.5. The Crank-Nicolson approach is used to achieve second order accurate

time integration.

The initial and final solutions for the electron temperature are shown in Figure 59 in color contour in the rz-plane.

The heat conduction has diffused the temperature in time to a more uniform state. The black line indicates the region in

which the mesh refinement was applied. The relative maximum error of the numerically obtained electron temperature
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Figure 59: The electron temperature for the uniform heat conduction test on a non-uniform grid in rz-geometry. The

top panel shows the electron temperature in the initial condition while the bottom panel is the electron temperature at

the final time. The black box indicates the region within which the grid is refined by one level.
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Figure 60: The relative maximum error for the uniform heat conduction test on a non-uniform grid in the rz-geometry.

109



versus the analytical solution is shown in Figure 60. Here we used the non-uniform grid with base resolutions of 902,

1802, 3602, and 7202 cells and set the time step proportional to the cell size to demonstrate a second order convergence

rate.

4.1.3.2 Reinicke Meyer-ter Vehn Test

The Reinecke and Meyer-ter Vehn [1991] problem tests both the hydrodynamics and heat conduction implementations.

This test generalizes the well-known Sedov–Taylor strong point explosion in single temperature hydrodynamics by

including the heat conduction. The heat conductivity is parameterized as a non-linear function of the density and

material temperature: Ce = ρaT b. We select the spherically symmetric self-similar solution of Reinecke and Meyer-

ter Vehn [1991] with coefficients a = −2 and b = 13/2 and the adiabatic index is γ = 5/4. This solution produces,

similar to the Sedov–Taylor blast-wave, an expanding shock front through an ambient medium. However, at very high

temperatures, thermal heat conduction dominates the fluid flows, so that a thermal front precedes the shock front. With

the selected parameters, the heat front is always at twice the distance from the origin of the explosion as is the shock

front.

We perform the test in rz-geometry. The computational domain is divided in 200× 200 cells. The boundary

conditions along the r and z axes are reflective. The two other boundaries, away from explosion, are prescribed by

the self-similar solution. The time evolution is numerically performed as follows: For the hydrodynamics, we use

the HLLE scheme with the CFL number set to 0.8. Since this test is performed on a uniform grid without adaptive

mesh refinement, we can use the generalized Koren limiter with β = 2. This is the same as the original Koren [1993]

slope limiter. The heat conduction is solved implicitly with the preconditioned conjugate gradient method. The test

is initialized with the spherical self-similar solution with the shock front located at the spherical radius 0.225 and the

heat front is at 0.45. The simulation is stopped once the shock front has reached 0.45 and the heat front is at 0.9.

A 1D slice along the r-axis of the solution at the final time is shown in Figure 61. We normalize the output similar to

Reinecke and Meyer-ter Vehn [1991]: The temperature is normalized by the central temperature, while the density and

radial velocity are normalized by their values of the post-shock state at the shock. The numerical solution obtained by

the CRASH code is shown as + symbols and is close to the self-similar reference solution, shown as solid lines. Note

that the temperature is smooth due to the heat conduction, except for the discontinuous derivative at the heat front. The

wiggle at r = 0.3 in the density and radial velocity is due to the diffusion of the analytical shock discontinuity in the

initial condition during the first few time steps. In the left panel of Figure 62, the spherical expansion of temperature

at the final time is shown. Clearly, the Cartesian grid with the rz-geometry does not significantly distort the spherical

symmetry of the solution. The spatial distribution of the error in the temperature is shown in the right panel. The

errors are largest at the discontinuities of the shock and heat fronts as expected.

A grid convergence study is performed with resolutions of 2002, 4002, and 8002 cells. The relative L1 error in

Figure 63 is calculated using the density, velocity components, and the material temperature. The convergence rate is

first order due to the shock and heat front.

4.1.3.3 Heat Conduction Version of Lowrie’s Test

Any of the verification tests for non-equilibrium gray-diffusion coupled to the single temperature hydrodynamics can

be reworked as a test for the hydrodynamic equations for the ions coupled to the electron pressure equation with
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Figure 61: Density (top panel), temperature (middle panel), and radial velocity (bottom panel) along the z = 0 cut for

the Reinicke Meyer-ter Vehn test in rz-geometry. The numerical solution (+ symbols) is at the final time compared to

the self-similar analytical reference solution (solid lines).
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Figure 62: The temperature (left panel) and temperature error compared to the reference solution (right panel) for the

Reinicke Meyer-ter Vehn test in rz-geometry.
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Figure 63: The relative L1 error for the Reinicke Meyer-ter Vehn test in rz-geometry.
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electron heat conduction and energy exchange between the electrons and ions. As an example, we transform one of

the non-equilibrium gray diffusion tests of Lowrie and Edwards [2008] to verify the heat conduction implementation.

The electron energy density equation (18) without the radiation interaction can be written as

∂Ee

∂ t
+∇ · [Eeu]+ pe∇ ·u = ∇ · [Ce∇Te]+σie(Ti−Te), (214)

where the heat conduction and energy exchange terms on the right hand side depend on the gradients and differences

of the temperatures. The equation for the gray radiation energy density (14) on the other hand depends on the gradients

and differences of energy densities. By defining the radiation temperature Tr by Er = aT 4
r and using the definition of

the Planckian B = aT 4
e , we can rewrite the energy density equation for the radiation as

∂Er

∂ t
+∇ · [Eru]+

1
3

Er∇ ·u = ∇ · [Dr∇Er]+ cκP(aT 4−Er)

= ∇ ·
[
Dr∇Tr

]
+ cκP(T −Tr), (215)

where Dr = Dr4aT 3
r and cκP = cκPa(T 2+T 2

r )(T +Tr) are the new coefficients that appear due to this transformation.

The equations (214) and (215) are now of the same form. To translate a gray diffusion test to a heat conduction test, we

reinterpret Dr as the heat conductivity Ce and cκP as the relaxation coefficient σie in the ion-electron energy exchange.

In addition, the material temperature T and radiation temperature Tr have to be reinterpreted as the ion temperature Ti

and electron temperature Te, respectively. Note that we also have to relate the electron pressure and internal energy

by pe = Ee/3 similar to the radiation field corresponding to γe = 4/3, and let the electron internal energy and electron

specific heat depend on the electron temperature as Ee = aT 4
e and CVe = 4aT 3

e , respectively.

As an example, we transform the Mach 5 non-equilibrium gray diffusion shock tube problem of Lowrie and Ed-

wards [2008]. It uses non-uniform opacities that depend on the density and temperature defined by Dr = 0.0175(γT )7/2/ρ

and cκP = 106/Dr. The above described procedure is used to translate this problem to an electron heat conduction test

with energy exchange between the electron and ions. The heat conductivity for this test is Ce = 4aT 3
e 0.0175(γTi)

7/2/ρ

and the relaxation coefficient between the electron and ions is σie = a(T 2
i +T 2

e )(Ti +Te)4aT 3
e 106/Ce.

We perform this Mach 5 heat conduction test on a 2D non-uniform grid. For the initial condition, the 1D semi-

analytical steady state reference solution of Lowrie and Edwards [2008] is used. There is a Mach 5 pre-shock flow

on the left side of the tube resulting in an embedded hydro shock as well as a steep thermal front (a look at Figure

64 will help to understand this shock tube problem.) We add an additional velocity of Mach −5 so that the pre-shock

velocity is zero and the shock is no longer steady, but instead will move to the left with a velocity −5 (in units in

which the pre-shock speed of sound is 1). The problem is rotated counter-clockwise on the grid by tan−1(1/2). The

translational symmetry is now in the (−1,2) direction in the xy-plane similar to the Mach 1.05 shock tube problem

described in Section 4.1.2.2. The computational domain is −0.0384 < x < 0.0384 by −0.0048 < y < 0.0048. Inside

the area −0.0128 < x < 0.0128 and −0.0016 < y < 0.0016, we apply one level of refinement. This refinement is set

up such that both the heat front as well as the shock front propagate through the resolution change on the left (from

fine to coarse) and right (from coarse to fine), respectively. For the boundary conditions in the x-direction, we fix the

state on the right side with the semi-analytical solution, but for the left side we use zero gradient. On the y boundaries,

we apply a sheared zero gradient in the (−1,2) direction.

For the evolution until the final time t = 0.0025, we use the HLLE scheme together with the generalized Koren

limiter with β = 3/2 to solve the hydrodynamic equations. The CFL number is set to 0.8. The heat conduction and
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Figure 64: Mach 5 shock tube problem of Lowrie and Edwards [2008] transformed to a non-uniform heat conduction

and ion-electron collision frequency test and rotated on a 2D non-uniform grid. Ion (left panel) and electron (right

panel) temperatures at the final time are shown in the x-direction. The blue line is the reference solution. In the left

panel, the grid convergence near the shock is shown in the inset. In the right panel, a blow-up of the grid convergence

to the reference heat front is shown.

energy exchange between electrons and ions are solved implicitly with the backward Euler scheme using the GMRES

iterative solver in combination with a BILU preconditioner.

In Figure 64, the electron (right panel) and ion (left panel) temperatures are shown at the final time along the

x-axis. The semi-analytical reference solution is shown as a blue line, while the numerical solution is shown with +

symbols for a simulation with 192× 24 cells at the base level in the x and y direction. The hydro shock is located

near x≈ 0.0085 and shows up in the ion temperature as a jump in the temperature, followed directly behind the shock

by a strong relaxation due to the energy exchange between the ions and electrons. The electron temperature stays

smooth due to strong heat conduction. The heat front is seen with a steep foot at x≈−0.022. This front corresponds

to the radiative precursor in the non-equilibirum gray diffusion tests of Lowrie and Edwards [2008]. We repeat the

test with four different resolutions at the base level: 192×24, 384×48, 768×96, and 1536×192 cells in the x and y

direction. The insets in both panels of Figure 64 show the four resolutions as solid, dotted, dashed, dashed-dotted lines,

respectively. In the left panel, the zoom-in shows the convergence of the ion temperature towards the embedded hydro

shock and the temperature relaxation. In the right panel, the blow-up shows the convergence towards the reference

precursor front. Note that no spurious oscillations appear near the shock or near the precursor.

Due to the discontinuity in both the shock and heat precursor, the convergence rate can be at most first order.

Indeed, in Figure 65 the relative L1 error shows first order accuracy. The error is calculated using all the density,

velocity components and both temperatures. Note that the spike in the ion temperature is spatially so small that a huge

number of grid cells are needed to get a fully resolved shock and relaxation state.

4.1.4 Full System Tests

The CRASH test repository contains a range of full system configurations to be used for validation with future labo-

ratory experiments. In Figure 66, we show the configuration of a 3D elliptical nozzle through which a fast shock of
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Figure 65: Relative L1 error for the Mach 5 non-equilibrium heat conduction test on a non-uniform grid.
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Figure 66: The geometry of the 3D elliptic nozzle experiment after 1.1 ns, consisting of 5 materials: beryllium (blue),

xenon (black), polyimide (green), gold (yellow), and acrylic (red) in both panels. The radius of the inside of the

polyimide tube is 600 µm in the y = 0 plane (left panel). In the z = 0 plane (right panel), the radius of the inner tube

is 600 µm for x < 500 µm, but shrinks to 300 µm beyond x = 750 µm. The lines represent the mesh refinement at

material interfaces and shock fronts.
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the order of 150 km/s will be launched, which is still significantly slower than the speed of light. The shock wave is

produced by a 1.1 ns laser pulse from the left with 4 kJ of energy irradiating a 20 µm thick beryllium disk, initially

located at x = 0. A layer of gold is glued to the plastic tube to protect the outside of the tube from the laser-driven

shock. The plastic (polyimide) tube is circular for x < 500 µm with a radius of 600 µm. Beyond x = 750 µm the tube

is made elliptical by flattening the tube in the y-direction by a factor 2.

A laser energy deposition library is currently under construction and the implemented will be reported elsewhere.

For this paper, we will instead perform the first part of the simulation with the 2D, Lagrangian, radiation hydrodynam-

ics code HYADES [Larsen and Lane, 1994] to time-advance the heating due to the irradiation by the laser beams and

the response of the plasma until 1.1 ns. This laser pulse first shocks and then accelerates the beryllium to the right.

After 1.1 ns, the output of HYADES is used as an initial condition of the CRASH code.

This simulation is performed for a two-temperature, electron and ion, plasma. For the radiation, we use the flux

limited diffusion approximation with 30 groups. The photon energy is in the range of 0.1 eV to 20 keV, logarithmically

distributed over the groups. Due to the symmetry in the problem we only simulate one quadrant (y > 0 and z > 0), with

reflective boundary conditions at y= 0 and z= 0. At all other boundaries we use an extrapolation with zero gradient for

the plasma and a zero incoming flux boundary for the radiation. The domain size is [−150,3900]× [0,900]× [0,900]

microns for the x, y, z coordinates. The base level grid consists of 120×20×20 blocks of 4×4×4 mesh cells. One

level of dynamic mesh refinement is used at material interfaces and the shock front. Overall, the effective resolution

is 960×160×160 cells and there are approximately 4.5 million finite volume cells. The hydrodynamic equations are

solved with the HLLE scheme with a CFL number 0.8 together with the generalized Koren limiter with β = 3/2. The

diffusion and energy exchange of the radiation groups as well as the heat conduction are solved with the decoupled

implicit scheme using a Bi-CGSTAB iterative solver. The simulation from 1.1 ns to 13 ns physical time took 1 hour

and 55 minutes on 480 cores of the FLUX supercomputer at the University of Michigan.

In Figure 67, we show the shock structure at 13 ns. The accelerated beryllium compresses the xenon directly to the

right of the interface, which is seen as a high density plasma near x = 1700 µm in the top right panel of Figure 67. This

drives a primary shock and the velocity jump at x≈ 1700 µm is seen in the middle left panel. Behind the shock front,

the ions are heated as depicted from the middle right panel, followed directly behind the shock by cooling due to the

energy exchange between ions and electrons. Early on, electron heating produces ionization and emission of radiation,

and the radiation in turn heats and ionizes the material ahead of the primary shock. The radiation temperature, a

measured by the total radiation energy density, is shown in the bottom left panel. The photons will interact again with

the matter, sometimes after traveling some distance. This is the source of the wall shock seen ahead of the primary

shock [Doss et al., 2009, 2011a]: photons traveling ahead of the shock interact with the plastic wall, heat it, and in

turn drive a shock off the wall into the xenon. The ablation of plastic is depicted in the top left panel as a radially

inward moving polyimide (in green color) near and even ahead of the primary shock. The compressed xenon due to

plastic ablation is seen in the top right panel as a faint density feature that is ahead of the primary shock front, between

x = 1700 µm and x = 2000 µm. Interaction between the photons and matter is also seen by the radiative precursor to

the right of the radiative shock elevating the electron temperature ahead of the shock in the bottom right panel. This is

due to the strong coupling between the electrons and radiation field. The reader is referred to Drake et al. [2011] for

more details on radiative effects in radiative shock tubes.
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Figure 67: Simulated radiative shock structure at 13ns in a 3D elliptic nozzle consisting of the 5 materials indicated in

Figure 66. The plots show in the xy-plane in color contour the variables indicated in the plot title. The primary shock

is at x≈ 1700.
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4.2 Validation

The entire CRASH project can properly be viewed as a validation study, assessing the ability of the CRASH code to

correctly predict the observed behavior of our radiative shock experiment. And indeed, during our early years during

which we had to rely on a separate Lagrangian code to calculate the laser energy deposition and early radiative-shock

behavior, our calculations were not validated. This drove the project, in both its focus on certain code improvements

that ultimately succeeded and in the selection of experiments, most of which involved obtaining more extensive data

regarding the behavior of our primary radiative shock system.

However, we found little time to pursue component validation in a formal sense, by which is usually meant the

modeling of experiments that stress one or another aspect of the physics in the code. The shock breakout data we

obtained could be used to focus on validation of the laser-energy-deposition calculation, and was used in that way for

our initial simulations using Hyades [Kuranz et al., 2013]. However, we did not find time to return to this issue for the

CRASH simulations once the CRASH laser package was working. Other programmatic priorities intervened. We did

complete a validation study of the hydrodynamic solver, described next.

Validation is often also used in a less rigorous sense, to describe the successful application of a code to model

various experiments. Predictive science purists sometimes are disdainful toward such efforts, but they do have merit in

the sense that they stress the physics in a code in new ways. One of our annual reviewers opined that the best way to

assure that a code was good was to run it for many different problems. While we appreciate that the formal approach is

more rigorous, and may matter a lot for precision applications, we also think his point is of some value. For whatever

reason, he did not return as a panel member the next year.

Figure 68: Flow morphology obtained by CRASH simulations with 128 grid points per wavelength (left) and 256 grid

points per wavelength (center). The plot on the right shows the result from the experiment. Although the amplitude of

the instability is similar in all three plots, the experiment shows much more detail, especially in the rollup.

4.2.1 Richtmyer Meshkov validation study

Component validation, in which one compares a simulation code to data from field experiments that test one of the

physics components of the code, are a recognized part of uncertainty quantification. The CRASH project has had little

time for such studies, under the pressure of the need to complete integrated simulations and to be ready to predict the
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Figure 69: Amplitude of the perturbations vs. time for the three CRASH simulations with resolutions of 64, 128, and

256 grid points per wavelength. The triangles show the data from the experiment. Agreement is very good before

re-shock, and the one experimental data point after re-shock is consistent with the highest resolution simulation.

year-5 experiment. Despite the competing priorities, we have completed the component validation study described

here.

An effort has been made to validate the hydrodynamic modules in the CRASH code by simulating the vertical

shock tube experiments of Richtmyer-Meshkov instabilities carried out by Collins and Jacobs at the University of

Arizona. The two materials used were air and SF6, providing a density ratio of approximately 1:5. A two-dimensional

sinusoidal perturbation was applied to the interface by shaking the tube. The shock propagated downward through the

air, refracted through the interface into the SF6, and excited the instability, causing the amplitude of the perturbation

to grow. The nonlinear behavior of the instability produced the spike and bubble morphology characteristic of the

RM instability, with “mushroom cap” structures at the tips of the spikes. The shock was then allowed to reflect off

the bottom of the shock tube, propagate upward, and re-shock the interface. At this point the flow became very

complex,turbulent, and fully three dimensional.

The CRASH simulations were carried out in two-dimensional Cartesian geometry, which should be adequate to model

at least the early stages of the experiment before re-shock. The grid resolution needed to obtain a converged growth rate

and to reproduce the growth rate seen in the experiment was measured by varying the wavelength of the perturbation

from 64 to 256 grid points. It is not possible to obtain convergence for the flow morphology, since smaller-scale

structures will continue to appear as the grid is refined, given the lack of a physical dissipation mechanism in the code.
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The results at resolutions of 128 and 256 grid points per wavelength are shown in Figure 68. Also shown is the result

from the experiment. In these plots, the spike is at the edge of the grid and the bubble at the center. The growth rate

obtained by the code is consistent with that seen in the experiment, but the details of the flow are slightly different.

There is much less roll up in the simulations, especially at a resolution of 128 grid points, indicating that the numerical

dissipation in the code at this resolution is larger than the physical dissipation in the experiment. The amplitude of the

instability as a function of time at each grid resolution is plotted in Figure 69, along with the data from the experiment.

The results before re-shock agree very well with the experiment. After re-shock, it is difficult to tell how good the

agreement is, since there is only one experimental data point. However, at this point the highest-resolution simulation

is consistent with the experiment. The amplitude has not quite converged at these resolutions, but it appears to be close.

The lowest-resolution simulation produced a considerably slower growth rate after re-shock. It would be somewhat

surprising if the simulations and experiment agreed well after re-shock, since the three-dimensional behavior of the

experiment at this time cannot be reproduced by the two-dimensional simulations.
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Figure 70: Comparison of CRASH simulation results and electron density data at 4 mm from a target surface, for

collisionless-shock development experiments by the ACSEL collaboration.

4.2.2 Other applications

The CRASH code is now in active use for modeling HED experiments. A recent example where multidimensional

effects are critical is the collisionless-shock experiments on which we collaborate, as part of the Astrophysical Col-

lisionless Shock Experiments with Lasers (ACSEL) project led by Hye-Sook Park of LLNL. This project sought

modeling support from us because it was not possible to obtain sufficient support from LLNL. (This is common in

the NNSA labs, where obtaining simulation and design support even for internal basic science experiments is often

hampered by their perceived lack of programmatic priority. One of the ways we can increase our interactions with

the laboratories is to provide such support in collaborative projects.) Figure 70 shows the density from one of these

simulations, used to help refine experimental plans for a late 2011 ACSEL shot day.
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Figure 71: Color contour pot showing log density in simulations of an experimental design for a long-lived jet, several

of which can drive a rotating, turbulent plasma.

Other uses of CRASH to model our HED experiments were shown above; we are using it for all of them. CRASH

aided in examination of design choices for radiative reverse shock experiments. CRASH is being actively used to

evaluate target designs for magnetized flow experiments. (See Fig. 71) CRASH has also modeled radiative-shock

experiments using Ar gas rather than Xe, for which the simulations are essential to enable interpretation of transverse

optical pyrometry data. CRASH has just begun to be used by our first non-Michigan group, at Florida State University,

to model the Diverging Supernova Rayleigh Taylor experiments accepted for NIF. Figure 72 shows results from a

preliminary run. The code is also being used to model previous, planar, Supernova Rayleigh Taylor experiments both

as a validation study and to explore the potential generation of magnetic fields in these systems [Kuranz et al., 2010].

Figure 73 shows results from a simulation.

Figure 72: Color contour pot showing log density in simulations of an experiment design to produce a diverging,

unstable explosion on NIF relevant to supernovae.
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Figure 73: Color contour pot showing log density in simulations of past experiments producing blast-wave-driven

instabilities relevant to supernovae.

4.3 Solution Verification for the CRASH Code

It is easy to assess the errors and grid convergence properties for a simulation code in cases where an analytic solution

exists. The error is just the difference between the simulated solution and the analytic solution, and the rate at which

the simulated solution approaches the analytic solution provides the rate of convergence of the method. For the case

where no analytic solution exists, other techniques must be used. An unreliable method would be to estimate the error

in the general case by running a number of problems with analytic solutions that are chosen to be as close as possible

to the problem of interest. However, when there are extreme non-linearities in the physics and the chance for complex

interactions between various physics modules, this method has the potential to severly underestimate the numerical

errors.

One method proposed by Roache is to compute a quantity called the Grid Convergence Index (GCI), which mea-

sures the relative error between solutions on different grid sizes. This can then be used to construct approximate error

bars for the solution. This quantity is defined as

GCI =
FS

Rp−1

∣∣∣∣∣y
(
∆x f
)
− y(∆xc)

y
(
∆x f
) ∣∣∣∣∣ , (216)

where ∆x f and ∆xc are the grid spacings on the fine and coarse grids, y is the simulated solution on those grids, R is

the refinement ratio ∆x f /∆xc, and Fs is a “safety factor”. There is some controversy over the appropriate value to use

for FS, but typical values are in the range of 1 to 3. The correct solution is then assumed to lie in the range given by

yGCI ≈ y(1±GCI) . (217)
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If the exact solution to the problem is known, the order of convergence of the numerical method can be easily

calcualted from the following equations

ε (∆xc) = |yexact− y(∆xc)|= β (∆xc)
p +HOT (218)

ε
(
∆x f
)
=
∣∣yexact− y

(
∆x f
)∣∣= β

(
∆x f
)p

+HOT, (219)

where ε is the error between the simulated solution and the exact solution, p is the order of the method, β is an

unknown constant, and HOT represents the higher order terms. Equations 218 and 219 represent a system of two

equations with two unknowns (p and β ) that can be solved to give the order of convergence as

p =
1

log(R)
log

(
ε (∆xc)

ε
(
∆x f
)) . (220)

If the exact solution is not known, a “converged” solution on a very fine grid can be used in place of the exact solution.

If the solution on three grids can be obtained, it is possible to use Richardson extrapolation to determine the order

of convergence as well as an extrapolated estimate of the solution on an infinitely fine grid. This analysis assumes

that the solution on the three grids are in the asymptotic regime of convergence, in which all higher order terms are

negligble. If this is not the case, the results will not be reliable. It also assumes that convergence is monotonic. For

non-monotonic convergence, the analysis fails. The numerical solutions on the three grids (coarse, medium, and fine)

are given by

y(∆xc) = yRE +β (∆xc)
p +HOT (221)

y(∆xm) = yRE +β (∆xm)
p +HOT (222)

y
(
∆x f
)
= yRE +β

(
∆x f
)p

+HOT, (223)

where yRE is the extrapolated solution. There are now three equations with three unknowns (p, β , and yRE), which

can be solved to give

p =
1

log(R)
log

(
y(∆xm)− y(∆xc)

y
(
∆x f
)
− y(∆xm)

)
(224)

yRE = y
(
∆x f
)
+

y
(
∆x f
)
− y(∆xm)

Rp−1
. (225)

The remainder of this section will describe application of these techniques to the CRASH code. The first problem

to be discussed will be a radiative shock tube that exercises many of the physics modules relevant to the full CRASH

problem. An analysis of a one-dimensional version of the full CRASH problem will then be presented, followed by

some results for the two-dimensional CRASH problem.
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Figure 74: Denisty profiles at t = 0.01 s for the radiative shock tube test problem using six different grid resolutions.

The lowest resolution shown is 288 grid points, represented by the black curve. A factor of two was used for each grid

refinement, with the highest resolution shown, 9216 points, represented by the blue curve. Two additional simulations

were performed using 18,342 and 36,864 points. The results of these were indistinguishable from the 9216 point case

on the plot, indicating that grid convergence had been achieved at 9216 points.

Figure 75: Density at x = 0.30825 for the radiative shock tube test problem as a function of grid resolution. The error

bars were obtained using the grid convergence index with a safety factor of FS = 3.
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4.3.1 Shock Tube with Radiation

A relatively simple problem involving both gray radiation diffusion and hydrodynamics was proposed by Lowrie and

Morel. A one-dimensional shock tube is defined on a grid ranging from x = 0. to x = 1. with the discontinuity initially

at x = 0.25. The initial values of density, fluid velocity, and pressure to the left of the interface are 3.123, 6.798, and

2.874, respectively. To the right of the interface, the initial density, fluid velocity, and pressure are 1.0, 0., and 0.6,

respectively. The material is assumed to be a gamma-law gas with γ = 5/3. The radiation energy and flux are given

by

Er = arT 4, Fr = 4/3Erv, (226)

where v is the fluid velocity, ar = 44.93 is the radiation constant, and the speed of light is c = 100. A constant opacity

is assumed with a value σt = 100.

Figure 76: Maximum density in the radiative shock tube test problem as a function of grid resolution. The error bars

were obtained using the grid convergence index with a safety factor of FS = 3.

Grid convergence was tested for this problem using nine grid sizes, ranging from 144 points to 36,864 points.

A constant refinement ratio of R = 2 was used. Fig. 74 shows the density profile at t=0.01 for six of these grids.

Grid sizes represented are 288 (black), 576 (cyan), 1152(magenta), 2304(green), 4608 (red), and 9216 (blue). For the

two higher-resolution grids, the results were virtually indistinguishable from the 9216-point case, suggesting that a

converged solution has been reached. The solution on the 144-point grid was so inaccurate that it was not included on

the plot.

The density at a fixed point (x = 0.30825) as a function of grid size is plotted in Fig. 75. The error bars were

obtained using the GCI with a safety factor FS = 3. It appears that these error bars represent a reasonable estimate of

125



800 1000 1200 1400 1600 1800 2000 2200

3.
60

3.
65

3.
70

3.
75

3.
80

Number of Zones

D
en

si
ty

 a
t x

=0
.3

08
25

Figure 77: Closeup of the density at x = 0.30825 as a function of grid size for the radiative shock tube problem. The

convergence is oscillatory, preventing use of Richardson extrapolation. The scatter in the points is due to errors in the

feature extraction algorithm. The curve was obtained using a smoothing algorithm.

the error in the solution. Fig. 76 shows a similar plot for maxium density on the grid. Again, the error bars shown

appear to provide a reasonable estimate of the numerical errors.

Unfortunately, it is impossible to use Richardson extrapolation for this problem, since the convergence is non-

monotonic. This is illustrated in Fig. 77, which shows the density at x = 0.30825 for a large number of grids between

576 points and 2100 points. The scatter in the points is caused by errors in the feature extraction algorithm. The red

points indicate a first sample of grids. Gaps between the red points were later filled in with the blue points. The curve

was obtained using a smoothing algorithm.

Even though Richardson extrapolation cannot be used for these results, it is still possible to estimate the conver-

gence order of the code from Eq. 220. The convergence rates for both the density at a fixed point and the maximum

density between each two adjacent grid sizes are listed in Table 12. The wide variation in these numbers results from

the non-monotonic grid convergence of the code. For the convergence of the maximum density, some grid sizes actu-

ally show a negative order of convergence, indicating that the solution on the finer grid is farther from the reference

solution than the solution on the coarser grid.

4.3.2 One-dimensional CRASH Problem with Hyades Initialization

Given the limited success in applying solution verification techiniques to the radiative shock tube problem, one might

expect even more difficulties in applying them to the full CRASH problem, and indeed, this turned out to be true.
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Table 12: Order of Convergence

Points ρ(x=0.30825) Max ρ

144 0.304 0.554

288 0.741 0.726

576 0.807 2.304

1152 3.845 3.778

2304 2.287 -0.992

4608 1.265 1.672

9216 1.882 5.730

18432 0.737 -2.402

Nevertheless, performing the analysis provided some very valuable information about the CRASH code. For this

section, a one-dimensional version of the CRASH problem was used. The code was initialized using a solution from

the Hyades code at 1.1 ns.

xshk 

(x1, ρ1) 

(x2, ρ2) 

(x3, ρ3) 

Figure 78: Density profile at 26 ns for a one-dimensional version of the CRASH problem. The simulation was initiated

using output from Hyades at 1.1 ns. The positions and densities shown in red indicate the output quantities of interest

that were used to test grid convergence.

The density profile at 26 ns on a grid of 25,600 points is shown in Fig. 78. There are two very sharp peaks, which

require extremely fine grids to resolve. Grid convergence was tested using the shock location (xshk), the location of the

peak on the left (x1), the location of the density minimum (x2), and the density at the two peaks and at the minmum
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(ρ1, ρ2, and ρ3). These values are shown in red in Fig. 78.

Figure 79: Density profiles at 26 ns for a one-dimensional version of the CRASH problem with Hyades initialization

obtained using the five lowest-resolution grids. The density peak moves to the right and increases in height with

increasing resolution for these relatively small grids.

Figure 80: Density profiles at 26 ns for a one-dimensional version of the CRASH problem with Hyades initialization

obtained using the four highest-resolution grids. The density peak moves to the left and descreases in height with

increasing grid size at these resolutions, which is opposite to the behavior seen for low-resolution grids. The code is

showing no sign of convergence at these resolutions, since the differences between the solutions do not seem to be

decreasing.

Nine different grids were used to test convergence, ranging from 100 points to 25,600 points, using a constant

refinement ratio of R = 2. The density profile at 26 ns on the five coarsest grids is plotted in Fig. 79. The locations

of the two density peaks and the density minimum move to the right as the resolution is increased. The value of the
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p=0.23 p=0.04 p=0.29 

Figure 81: Location of three features in a one-dimensional version of the CRASH problem with Hyades initialization

as a function of grid resolution. The plots represent, from left to right, the shock location xshk, x1, and x2 as shown on

Fig. 78. The error bars were obtained using the grid convergence index with a safety factor of FS = 3. Due to the non-

convergence of the code for this problem, these error bars do not give a very meaningful estimate of the convergence

error. The horizontal line represents the value obtained using Richardson extrapolation for the three highest-resolution

values. This value is also very unreliable due to the convergence problems. The value of p shown is the order of

convergence obtained using the three highest-resolution simulations.

density at all three locations increases with increasing resolution. Judging from these five grids, it appears that the

code is converging properly. However, the situation changes for higher-resolution grids, as shown in Fig. 80. For these

grids, the location of all three features moves to the left with increasing resolution and the density values decrease.

p=0.06 p=0.16 p= -0.62 

Figure 82: From left to right, values of ρ1, ρ2, and ρ3 (see Fig. 78) as a function of grid resolution for a one-dimensional

version of the CRASH problem with Hyades initialization. The error bars were obtained using the grid convergence

index with a safety factor of FS = 3. Due to the non-convergence of the code for this problem, these error bars do

not give a very meaningful estimate of the convergence error. The horizontal line represents the value obtained using

Richardson extrapolation for the three highest-resolution values. This value is also very unreliable due to convergence

problems. The value of p shown is the order of convergence obtained using the three highest-resolution simulations.

For ρ3, the code is actually diverging with a negative order of convergence.
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Moreover, the difference between adjacent curves does not seem to be decreasing, and there is no sign that the locations

of the three features or the densities at those points are converging toward any particular values.

Fig. 81 shows (from left to right) the locations xshk, x1, and x2 as a function of grid resolution. The error bars

were obtained from the GCI with a safety factor FS = 3. The three highest-resolution points for each position were

monotonic, so it is possible to use Richardson extrapolation. The extrapolated solutions are given by the horizontal

dashed lines. In most cases, the extrapolated solution lies outside of the error bars. The order of convergence p

obtained for each case using the three highest-resolution points is shown in the lower right hand corner of each plot.

Fig. 82 shows a similar analysis for ρ1, ρ2, and ρ3. For ρ3, the code is diverging, with a negative order of convergence.

This type of behavior is an example of what can go wrong when solution verification techniques are applied to a code

that is not converging properly.

Figure 83: Density profiles obtained at 13 ns for a one-dimensional version of the CRASH problem with laser package

initialization at eight different grid resolutions. At the four lowest resolutions, the shock position varies dramatically,

increasing as the grid resolution is changed from 1024 to 2048 points and then decreasing as the resolution is increased

further to 8192. At higher resolution, the variation is much smaller, but the location of the shock remained erratic,

showing no sign of convergence. The simulations at 16,384 and 131,072 grid points agree quite well, but this is just

coincidence, since the intermediate resolutions are rather different.

4.3.3 One-dimensional CRASH Problem with Laser Package Initialization

A number of simulations were attempted in an effort to understand why the CRASH code was not converging for the

one-dimensional CRASH problem. The first was to use the CRASH laser package instead of the Hyades initialization.

Fig. 83 shows density profiles at 13 ns obtained using eight grid sizes ranging from 1024 points to 131,072 points. A

constant refinement ration of R = 2 was used. There is a large variation in location of the primary shock for the four

lowest resolutions. At higher resolution, the variation is much smaller, but the behavior is erratic, showing no clear

trend. The results for 16,384 points and 131,072 points are nearly identical, but this is just a coincidence and does

not indicate convergence, since the intermediate results are significantly different. Similar behavior is seen at 26 ns

(Fig. 84).
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Figure 84: Density profiles obtained at 26 ns for a one-dimensional version of the CRASH problem with laser package

initialization at eight different grid resolutions. The behavior is similar to that at 13 ns (Fig. 83). Although the location

of the primary shock does not seem to be converging, the range of variation is quite small compared to experimental

uncertainty at high resolution.

Figure 85: Location of primary shock as a function of grid size for a one-dimensional version of the CRASH problem

with laser package initialization. Results are shown at both 13 ns and 26 ns. There is no indication that the location is

converging toward a particular value.
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The location of the primary shock as a function of grid resolution is plotted in Fig. 85 at both 13 ns (left) and 26

ns (right). No clear convergent behavior is detectable. At the highest resolutions, the variation in shock location is

small compared to experimental uncertainties. However, there is no way to determine how much the shock location

will change at even higher resolutions. It is also interesting to observe that the resolution required to get close to a

converged solution is considerably higher when the laser package is used for initialization than when the result from

Hyades is used.

Figure 86: Density profiles obtained for a single-fluid version of the one-dimensional CRASH problem in which all of

the material is assumed to be pure xenon. Results are shown for six different grid resolutions. With a single material,

there is only one peak in density.

4.3.4 Single Material Test

The next set of tests performed investigated the effects on the convergence properties of using level sets to track

material interfaces in the CRASH code. The level set algorithm used in CRASH does not permit grid cells with a

mixture of materials. Each cell contains only one pure material. The advantage of this approach is that it avoids

errors having to do with computing equations of state and opacities for a mixture of materials. The disadvantage is

that it does not conserve the mass of each material, although the total mass within the grid is conserved. Since a

non-conservative method is not guaranteed to converge on the grid, the use of level sets seems a likely source of the

odd behaviors described in the previous sections.

For the test described here, all the material in the grid was assumed to be pure xenon. Since there are no longer

any material interfaces in the problem, this disables any effect of the level sets on the solution. The density profiles

obtained on six grids ranging from 800 points to 25,600 points are plotted in Fig. 86. There is now only a single density
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peak in the solution. Fig. 87 shows a closeup of the region in the vicinity of the shock. Although the location of the

shock does not vary monotonically, at the highest resolutions, the solution appears to be in the asymptotic regime of

convergence. The two highest-resolution results are nearly identical, suggesting that a converged solution has been

achieved. This result tends to support the idea that the non-convergence in the code is caused by the use of level sets

to track material interfaces.

4.3.5 Mixed Cell Test

An additional test of the level set algorithm involved a multi-material test with no interface tracking. The various

materials were allowed to mix with each other. This created errors in the equation of state and opacity calculations,

but the amount of each material in the grid was conserved to roundoff error. Additional error was created due to

increased diffusion across the material interface.

Fig. 88 shows the density profiles obtained on the same grids as for the single-material case. Unlike the single-

material case, the density again shows two seaparate peaks between the shock and the material interface. The increased

diffusion error can be seen by the spreading of the material interface, which for low resolutions is extreme. There is

no sign of non-convergent behavior, and the highest-resolution solutions are nearly identical. Given this result and the

result from the previous section, it appears nearly certain that the non-convergent behavior described above was due

to the use of level sets for tracking material interfaces.

Figure 87: Closeup of the region near the primary shock for the simulations shown in Fig. 86. The two highest-

resolution results are nearly identical, suggesting that a converged solution has been obtained.
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Figure 88: Density profiles obtained on six different grids for a one-dimensional version of the CRASH problem. For

these simulations, the level sets used to track material interfaces were turned off, and the fluids were allowed to mix.

Although there is considerably more diffusion at the material interface between the xenon and beryllium, the solution

appears to be nearly converged at the highest resolution.

4.3.6 Two-dimensional CRASH Problem with Laser Package Initialization

Uncertainties in the location of the primary shock are more complicated in multidimensional simulations. The errors

due to non-convergence described above are still present. To make matters worse, the huge grids used for some

of the one-dimensional tests are not feasible in two dimensions. The highest-resolution two-dimensional simulation

described in this section required months to complete. In addition to this error, the two-dimensional simulations are

subject to fluid instabilities. Due to the lack of a real physical viscosity in CRASH, short-wavelenth instabilities have

the fastest growth rates. As the grid is refined, the effective Reynolds number of the simulation increases, and even

shorter wavelengths grow. Without a dissipation mechansim to suppress these short-wavelength instabilities, there is

no way to obtain a converged solution. If these instabilites have an effect on the location of the primary shock, this

additional uncertainty should be included in the CRASH uncertainty quantification analysis. Finally, for reasons that

are not completely clear, CRASH produces an anomolous protruding feature on the symmetry axis that is not seen in

the experimental results. This leads to considerable uncertainty concerning the actualy location of the primary shock,

and different feature detection algorithms can produce quite different results.

The density distributions on five different grids obtained for the two-dimensional CRASH problem with laser

package initialization are shown in Fig. 89. Results are shown at both 13 ns (top) and 26 ns (bottom). It was not

feasible to use a fixed grid due to the enormous computational resources that would have been required. Instead,

higher resolution was obtained by increasing the number of levels of Adaptive Mesh Refinement (AMR). The effective

resolution for each refinement increased by a factor of two, ranging from 1320×120 to 21,120×1920. The resolution
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Figure 89: Density distribution at 13 ns (top) and 26 ns (bottom) for the two-dimensional CRASH problem with laser

package initialization. Results are shown at five different grid resolutions. Instead of using a fixed grid, the resolution

was changed by increasing the number of levels of Adaptive Mesh Refinement (AMR). This was necessary to achieve

high resolution without using an unreasonable amount of computer resources.
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typically used for CRASH uncertainty quantifaction studies typically corresponding to somewhat less that the two-

level results in two dimensions and somewhat less than the one-level results in three dimensions.

The location of the primary shock at both 13 ns (left) and 26 ns (right) are plotted in Fig. 90 as a function of the

number of AMR levels (grid resolution). At 13 ns, it appears that the shock position has converged, but given the

results described above, it seems likely that additional variation in shock location might occur at higher resolutions.

At 26 ns, there is no sign of a converged value for the shock location.

Figure 90: Shock location for the two-dimensional CRASH problem with laser package initialization as a function of

the number of AMR levels (grid resolution). Results are shown at times of 13 ns and 26 ns. At t = 13 ns, it appears

that the solution is converging. However, given the one-dimensional results described above, it is quite likely that the

shock location will show additional variation at higher resolutions.

4.3.7 Summary of Solution Verification Studies

Solution verification techniques have been applied to the CRASH code with only limited success. For a relatively

simple radiative shock tube problem, good grid convergence was achieved. However, the oscillatory nature of the

convergence prevented use of Richardson extrapolation and made it impossible to determine the order of convergence

of the code.

For a one-dimensional version of the full CRASH problem with initialization from a Hyades data file at 1.1 ns, the

situation was much worse. The code appeared to be converging properly for low-resolution grids. However, for grids

larger than about 3200 points, the direction of variation of the quantities of interest with increasing resolution reversed,

and it appeared unlikely that a converged solution could be found at any resolution. When the problem was initialized

using the CRASH laser package, convergence was even more erratic, and the number of grid points required to get a

“nearly converged solution” was even larger.

Two additional tests were performed to determine if the use of level sets for tracking material interfaces was the

cause of the poor convergence properties of the code. Since the level set algorithm used in CRASH does not conserve
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the mass of individual materials, convergence of the code is not guaranteed. For the first test, all of the material in the

grid was assumed to be pure xenon. Since there are no longer any material interfaces to track, the level set alogrithm

has no effect on the results. In this case, good grid convergence was achieved, although the convergence was still not

monotonic, making it impossible to use some solution verification techniques. The second test involved multi-material

simulations in which the level set tracking was turned off and the materials were allowed to mix. Here also, good grid

convergence was observed. It appears fairly certain that the use of level sets in CRASH to track material interfaces

prevents the code from converging on the grid.

The multidimensional CRASH problem suffers from the same convergence issues as the one-dimensional simpli-

fication. In addition, the presence of fluid instabilities further complicates the situation. Since there are no physical

dissipation terms in the CRASH code to limit the growth of short-wavelength instabilities, it is impossible to obtain

a converged solution. As the grid size is increased and the effective Reynolds number of the simulation increases,

smaller-wavelength instabilities will continually appear. It appears that these instabilities can affect the morphology

and location of the shocks in the problem, introducing additional uncertainties into the simulation.

In spite of the limited success of solution verification techniques, it is still possible to obtain a rough (although

not mathematically rigorous) estimate of the error in the shock location due to the use of non-converged simulations.

Even though the shock position is not converged even at high resolution, the range of variation is relatively small. The

difference between the shock location at the grid resolution typically used and the location at the highest resolutions is

approximately 100 µ for two-dimensional simulations and 150 µ for three-dimensional simulations. The variation in

shock location with resolution for the two-dimensional simulations is only about 50 µ , but this number would likely

increase if higher-resolution simulatons could be performed. These errors due to lack of grid convergence were not

yet included in the overall CRASH uncertainty quantification analysis at project end.

4.4 Code-to-code Comparisons

Contrary to the view of some who write about uncertainty quantification, we believe that code-to-code comparison can

be a valuable tool for checking the accuracy and reliability of numerical simulation codes. Agreement between the

codes does not guarantee that they are producing the correct answer. They could all be getting the same wrong result.

However, if there is disagreement, it is clear that at least one of the codes is wrong. Understanding the cause of these

discrepancies can point to programming errors or differences in physics modules that deserve further investigation.

We undertook a collaboration to compare several radiation-hydrodynamics codes. The codes currently in the test suite

are CRASH (University of Michigan), FLASH (University of Chicago), and xRAGE (LANL).

4.4.1 Description of Simulation Codes

All three codes contain sufficient physics for simulating a wide range of High-Energy-Density Physics (HEDP) phe-

nomena, including radiative shocks. They solve equations for plasmas containing electron, ions, and thermal radiation.

Each of these components is allowed to have a different temperature and thus the plasma is described by the “3T” or

“three-temperaturee” approximation.

The gas dynamics modules for compressible gas dynamics in each code solve Euler’s equations in conservative

form using finite-volume methods on a structured grid with adaptive mesh refinement capability. CRASH and FLASH

use a block-structured adaptive mesh, while xRAGE uses cell-by-cell refinement. The effects of viscosity in the prob-
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lems of interest here are typically much less than numerical diffusion and are, therefore, omitted from the equations.

Each code uses a different variation on the high-order Godunov formalism, and are accurate to second order in both

space and time. Radiative transfer is calculated using a flux-limited diffusion approximation with both single-group

and multigoup capability, although the details of the radiation solvers differ from code to code. Single-group calcula-

tions with FLASH are run in multigroup mode using a single energy group. The codes also compute energy diffusion

by flux-limited electron heat conduction and include terms to account for the transfer of energy between electrons and

ions through collisions, as well as the absorption and emission of radiation by electrons. The effects of scattering,

magnetic fields, and relativity are not included.

A major difference between the codes is in the way they treat material interfaces. CRASH determines interface

locations using a level set method. An initial level set function is defined for each material. The function for a given

material is positive in each zone which contains that material and negative in all other zones. The initial magnitude of

the function is equal to the distance between the interface and that zone. This function is advected along with the fluid

at each time step. At the end of each time step, the level set function with the largest value in each zone determines

the identity of the material in that zone. In this approach there are no mixed zones − each zone contains only a single

material. The advantage of this approach is that it eliminates the need to determine equations of state and opacities

for a fluid containing a mixture of materials. The disadvantage is that it does not conserve the mass of each material,

although the total mass within the grid remains fixed, except for material flowing through the boundaries. FLASH

and xRAGE solve a separate advection equation for each material and allow the materials to mix within each zone.

FLASH uses a steepener that prevents diffusive spreading of the interface beyond two zones. The opacities in mixed

cells are then weighted by the number density of each material. For the equation of state, FLASH assumes common

electron and ion temperatures. xRage produces sharp interfaces using either an interface preserver or a volume of fluid

method. It also weights the opacities by number density. The equation of state in mixed cells assumes temperature

and pressure equilibrium.

There are also differences in the 3T approximations used by the three codes. FLASH and xRAGE solve separate

equations for the total energy, electron energy, and radiation energy. CRASH uses an electron pressure equation

instead of the equation for the electron energy. All three codes divide shock heating among the electrons, ions, and

radiation in proportion to their pressure ratios. FLASH has an additional option to solve a separate electron entropy

equation to assign shock heating to only the ions.

4.4.2 Results

4.4.2.1 Reverse Radiative Shocks

The first comparison attempted was a one-dimensional shock tube that produces a reverse radiative shock. The plasma

is fully ionized helium at an initial density of 0.0065 gm/cm3. The boundary condition at the left of the grid was set

to be a reflecting wall, and material was allowed to flow into the grid through the right boundary at a velocity of 100

km/s. A radiative shock developed and propagated through the grid from left to right. A schematic of the initial setup

is shown in Figure 91.

Figure 92 shows the results obtained for the density and for the electron and ion temperatures using both FLASH

and xRAGE. This problem was not attempted with CRASH. The plot shows a close up of just the region in the vicinity

of the shock. The shock structure differs substantially between the two codes. The shock location is different, as
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are the peak ion temperature and the extent of the pre-heated region to the right of the shock. The two codes show

good agreement in the rest of the grid. At this point, it was decided that there were too many possible sources for this

discrepancy to easily diagnose. For this reason, we designed a set of simpler test problems that would test each term

in the equations individually. A subset of these tests will be discussed in the following sections.

Figure 91: Schematic of the reverse radiative shock test problem, in which fully ionized helium flows into the grid from

the right at a velocity of 100 km/s with a solid wall boundary at the left. The result is a radiative shock propagating to

the right.

4.4.2.2 Temperature Relaxation Tests

The simplest set of problems in our comparison suite tested the temperature relaxation terms in the equations. All

other terms were turned off. The grid was filled with an infinite medium of fully ionized helium at a density of

0.0065gm/cm3 with no spatial gradients. The helium was assumed to be an ideal gas with adiabatic index of 5/3. The

electron, ion, and radiation temperatures were set to different initial values and allowed to evolve into equilibrium.

The first problem in this set tested just the ion-electron equilibration. The initial ion temperature was 500 eV, while

the electrons were cooler at 250 eV. The time evolution of the two temperatures is shown in Figure 93. The electron

temperature is plotted in blue, with the ion temperature shown in green. The CRASH and xRAGE results are indicated

by the solid lines. The two results agree so closely that only a single line is visible. The FLASH results, shown as

individual points, also agree with the other two codes to several significant figures. An equilibrium temperature of

approximately 420 eV is achieved in an evolution time of less than 1 ns.

Temperature equilibration of the matter with the radiation field was also tested using mediums with constant opac-

ity, an opacity that depended on the electron temperature, and multigroup calculations, with different (but constant)

opacity in each group. The multigroup simulations used either four or eight energy groups. The initial radiation tem-
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Figure 92: Results obtained from FLASH and xRAGE for the reverse radiative shock test problem. The plot shows

only a small portion of the grid in the vicinity of the shock. The two codes produce different shock locations and

structures.

perature was set to 100 eV. Only two of these tests are described here. The time evolution of the three temperatures

for the constant opacity case is plotted in Figure 94. The opacity of the plasma was assumed to be 0.03 cm−1. The

initial temperature of the radiation was set to 100 eV. As in Figure 93, the electrons are plotted in blue and the ions in

green. The radiation temperature is shown in red. The results from CRASH and xRAGE are represented by the solid

lines, with the FLASH results indicated by the points. In this case, equilibrium had not quite been achieved by 1 ns.

However, it appears that the final equilibrium temperature will be approximately 280 eV. As with the previous tests,

all three codes gave nearly identical results.

The final test from this set to be described is the multigroup case with four energy groups. The boundaries of the

energy groups were located at 1 eV, 400 eV, 800 eV, 1.5 keV, and 100 keV. The opacity in each group was given by

σi = 1.0×108
(√

Ei−1/2Ei+1/2

)−3
cm−1,

with i ranging from 1 to 4. The time evolution of the energy density in each group is shown in Figure 95 for each

of the three codes. The CRASH results are represented by the red line, the xRAGE results by the green line, and the

FLASH results by the individual points. In this case, CRASH and FLASH produce nearly identical results. However,

xRAGE uses different algorithms and disagrees slightly from the other two codes. This difference is unlikely to have

any real consequence for practical problems. Initially, significant differences existed between the results from the three

codes for the multigroup cases. However, after some programming errors were fixed, the codes came into acceptable

agreement for all the tests in this set.
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Figure 93: Results of the ion-electron relaxation test for all three codes. The initial condition is a uniform medium of

ionized helium with different ion and electron temperatures. The plot shows the time evolution of the ion (green) and

electron (blue) temperatures. An equilibrium temperature is reached after about 1 ns. The results from CRASH and

xRAGE are represented by the solid lines, while the FLASH results are plotted as individual points. All three results

are indistinguishable on this scale and agree to several significant figures.

Figure 94: . Results of the ion-electron-radiation equilibration test using a single radiation energy group with constant

opacity. The initial condition is a uniform medium of ionized helium with different ion, electron, and radiation

temperatures. The plot shows the time evolution of the ion (green), electron (blue), and radiatio (red) temperatures.

An equilibrium temperature is not quite achieved by 1 ns. The results from CRASH and xRAGE are represented by

the solid lines, while the FLASH results are plotted as individual points. All three results are indistinguishable on this

scale and agree to several significant figures.
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Figure 95: Results from the ion-electron-radiation equilibration test using four radiation energy groups with a constant,

but different opacity in each group. The plot shows the time evolution of the energy density in each energy group.

Only three of the energy groups contain a significant energy density. The fourth group is represented by a flat line on

the horizontal axis. The results from CRASH are shown in red, those from xRage in green, and those from FLASH as

individual points. CRASH and FLASH show good agreement, but the xRage results differ slightly, due to the use of

different algorithms.

4.4.2.3 Diffusion Tests

The next set of tests to be discussed investigates the accuracy of the diffusion modules in the codes, including both

the electron conduction and radiation diffusion modules. Tests were performed using electron conduction alone,

electron conduction with ion-electron equilibration, gray radiation alone, and a full-physics test including both electron

conduction and single-group radiation diffusion along with ion-electron equilibration, emission, and absorption. For

these tests, the plasma is fully ionized helium at a density of 0.0018 gm/cm3. Again, the helium is assumed to be an

ideal gas. The domain extends from 0.0 cm to 0.1 cm with zero-flux boundary conditions at both edges of the grid.

The electron thermal conductivity is taken from Atzeni and Meyer-ter-Vehn. Initial temperature profiles for both the

ions and electrons are given by

T = 450 tanh [−1000(x−0.2)]+550 eV,

where x is the spatial coordinated in cm. This profile is shown in Figure 96. For tests involving radiation, the initial

radiation temperature profile is the same as for the ions and electrons but at one tenth the value. The opacities for

emission, absorption, and diffusion were all set to the same value, given by
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σ = 1000
(

0.43
z3

A2

)
ρ

2
(

Te

1000

)−7/2

cm−1,

where z is the ionization level, A is the atomic mass, ρ is the mass density, and Te is the electron temperature.

Figure 96: Initilal electron temperature profile for the diffusion tests. The vertical lines indicate the non-unifrom

adaptive grid that was used by FLASH. The initial ion temperature profile was identical to that of the electrons. The

initial radiation profile was also the same, but at one tenth the value.

The first test involves only electron heat conduction. The temperature profile obtained by the three codes at time

1.5 ns is plotted in Figure 97. The initial results were very different from each other due to an error in calculating

specific heats in one of the codes. This error was quickly found and corrected, and the results now show excellent

agreement. The results from CRASH and xRAGE are represented by the solid lines in the graph, while the results

from FLASH are indicated by the individual points.

This same test was then repeated with ion-electron equilibration turned on. The initial temperature of the electron

and ion temperature assumed the same tanh profile described above. Of course, the diffusion operated on only the

electrons. The results at 1.5 ns for FLASH and xRAGE are plotted in Figure 98. The xRAGE results are shown

as solid lines, and the FLASH results are represented by dashed lines. Again, the results from these two codes are

virtually identical. Although the CRASH results are not shown on the plot, they are also indistinguishable from the

results from the other two codes.

The next test is for single-group radiation diffusion, without emission, absorption, electron heat conduction, or

ion-electron equilibration. FLASH does not have a gray radiation solver, so for this problem, it was run in multigroup

mode using a single energy group with Te ranging from 0 to 1 MeV. The three temperature profiles from FLASH and

xRAGE at 2× 10−14 seconds are shown in Figure 99. This problem was not attempted with CRASH. The electron

and ion temperature profiles are shown in blue and green (only the green shows since the values are exactly equal and

the green curve overlies the blue curve). The radiation temperature is plotted in red. Since only the radiation diffusion
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terms are turned on, the electrons and ions maintain their original profiles. Only the radiation temperature gradient

spreads due to diffusion. The two codes are in excellent agreement.

The final diffusion problem tests all the terms in the equations, except for hydrodynamics. It includes electron heat

conduction, single-group radiation diffusion, ion-electron equilibration, emission, and absorption. Initial conditions

were set as described above. The temperature profiles obtained by the three codes at 0.2 ns are plotted in Fig. 10.

The electron temperature profile is plotted in blue, the ion temperature profile in green, and the radiation temperature

profile in red. The results from CRASH and xRAGE are represented as solid lines. The CRASH results overly the

xRAGE results, so only one line appears on the plot. The FLASH results are represented by individual points, which

lie exactly on top of the lines from the other two codes. The radiation evolves on a much shorter time scale than the

electrons and ions in this problem, so by the time shown in Fig. 10, the radiation temperature gradient has almost

completely diffused away.

4.4.2.4 Hydrodynamics Test

The final comparison described in this paper adds hydrodynamic effects and consists of a steady shock in a two-

temperature plasma, with Te 6= Ti. An important feature of this test problem is the existence of an analytic solution,

which was derived by Shafranov. This provides an additional sanity check on the reliability of the codes, since the

correct solution is known. Radiation does not play a role in this test, but electron heat conduction is included. The

conductivity varies as T 2.5
e and the ion-electron equilibration varies as T 1.5

e . Two constant states are initially separated

by a simple discontinuity and allowed to evolve until a steady state shock profile is achieved.

The initial upstream conditions are given by a fluid density of 0.0018 gm/cm3 and electron and ion temperatures

Figure 97: Electron temperature profile obtained by applying electron heat conduction to the temperature profile

shown in Figure 96. The results are plotted at time 1.5 ns. The spatial profiles obtained by CRASH and xRAGE

are represented by the solid line, while the FLASH results are plotted as individual ponits. The three codes give

indistinguishible results for this problem.
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Figure 98: Results at 1.5 ns for the electron conduction test problem when ion-electron equilibration is included.

xRAGE results are shown as solid lines, while the FLASH results aree represented by dashed lines. The code are

again in excellent agreement. Although not shown here, the results obtained by CRASH were virtually identical to

those obtained by the other two codes.

Figure 99: Single-group radiation diffusion test.. All three temperatures are initially set to tanh profiles, as described

in the text. The ion temperature profile is plotted in green and overlies the blue curves for the electron temperature.

The radiation temperature is shown in red. Since only the radiation diffusion terms are turned on, the electron and

ion temperatures maintain their original profiles. Only the radiation temperature shows the effects of the diffusion

operator. FLASH and xRAGE give good agreement for this problem, which was not attempted with CRASH.
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of 40 eV, with the fluid at rest. For the initial downstream conditions, the density is 0.004466 gm/cm3, the electron

and ion temperatures are 102.4393 eV, and the fluid velocity is 9.9635×106 cm/s. The plasma is assumed to be fully

ionized helium with an adiabatic index of 5/3. For these conditions, the steady shock speed is 1.6234×107 cm/s.

The steady profiles of the ion and electron temperatures near the shock obtained by the three codes are shown in

Figures 101 and 102. The FLASH results are represented by the blue line, the xRAGE results by the red line, and the

CRASH results by the dashed green line. FLASH was run using its entropy advection algorithm for this test. For the

sake of comparison, the shock locations were adjusted to coincide, since they achieved their steady profiles at different

times. The most difficult feature to get right in this problem is the peak ion temperature. The analytic value is 124.2

eV. FLASH achieved the closest value, reaching a peak ion temperature of 122.8 eV. CRASH was not far behind, with

a value of 122.5 eV. Initially, xRAGE reached a peak value of only 117 eV, as shown in Fig. 11, but after a small error

in the setup of the problem was uncovered, the xRAGE value improved to 121.6 eV. These small differences are not

likely to be significant for practical problems, and the agreement between the three codes and the analytic solution is

completely acceptable.

4.4.3 Summary

Three High-Energy-Density Physics (HEDP) codes (CRASH, FLASH, and xRAGE) have been compared on a variety

of simple one-dimensional test problems. The subset of problems described in this paper tested the ion/electron

equilibration terms, the radiation emission and absorption terms, and the diffusion modules in the codes. A final

test combined hydrodynamic effects, including shock propagation, with electron heat conduction and ion/electron

equilibration. At the start of the collaboration, significant differences existed between the codes for several of the

Figure 100: Diffusion test including electron heat conduction, single-group radiation diffusion, ion-electron equili-

bration, emission and absorption. The electron temperature is plotted in blue, the ion temperature in green, and the

radiation temperature in red. The CRASH and xRAGE results are both plotted as solid lines and lie on top of each

other. The FLASH results are represented by individual points and agree very well with the results from the other

two codes. The radiation evolves on a much faster time scale than the electrons and ions, so at this time (0.2 ns) the

radiation temperature gradient has almost completely diffused away
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Figure 101: Steady-state ion temperature profiles for the Shafranov problem obtained by the three codes. The problem

consists of a steady shock with unequal electron and ion temperatures. Electron heat conduction and ion-electron equi-

libration are both included, but radiation diffusion is not. The FLASH results, using the entropy advection algorithm,

are represented by the blue line, the xRAGE results are represented by the red line, and the CRASH results are given

by the dashed green line. The codes obtain slightly different peak value for the ion temperature. The low value of the

xRAGE value was due to a slight error in the setup of the problem, which has since been corrected. All three codes

are now in good agreement with each other and with the analytic solution.

comparisons. These differences were due to a number of factors. In some cases, the codes used different formulas

for the various transport coefficients being tested. In other cases, programming errors were discovered or errors were

made in the setup of the test problem. In still other cases, there were differences caused by using time steps that

were too large. Once all these issues were resolved, the codes produced nearly identical results. Future comparisons

will also include tests using flux limiters for the conduction and radiation diffusion, multidimensional problems, and

perhaps tests of additional physics modules, such as MHD. The ultimate goal of this collaboration is to compare the

codes on simulations of full HEDP experiments and to either get good agreement or at least to understand the causes

of any remaining discrepancies.
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Figure 102: Steady-state electron temperature profiles for the Shafranov problem obtained by the three codes. The

FLASH results are shown by the solid blue line, the xRAGE results by the solid red line, and the CRASH results by

the dashed green line. Only very small differences between the three results can be seen.

5 Evaluation of Model Form Uncertainties

In any complex, multiphysics simulation approximate models must be used. This is a source of uncertainty in the

results, often referred to as “model form uncertainty”. During this project we performed several studies aimed at

evaluating to some extent the errors that might be associated with various model assumptions in the CRASH code.

This was not a primary area of emphasis in the project, but we did make some progress, discussed in this section.

5.1 Transport–diffusion comparison using PDT and CRASH

We began this project with the intention of coupling the CRASH code with PDT, a highly scalable, radiation-transport

code from Texas A&M University, that solves that full Boltzmann Transport Equation. This would have provided

a model with higher fidelity than we accomplished. In pursuit of this goal we developed a version of PDT that

calculates the transport of thermal radiation. Coupling this to CRASH would have given us a code with capabilities

similar to those of a number of European codes used in solar-physics studies. However, combining these codes proved

impractical once we became familiar with some governmentally imposed limitations on the use of such a combination.

In addition, the limited computational resources that proved to be available limited the utility of even 3D calculations

with multigroup, flux-limited diffusion (FLD), and so we would have been unlikely to have accomplished predictive

science studies with such a combined code anyway. Facing these limitations, we instead focused the use of PDT on the

quantification of the errors in the diffusion method implemented in CRASH. The research reported here is a summary

a portion of the project that aimed to quantify the error associated with the use of radiation-diffusion to model radiation
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in the CRASH project.

The most important computational tools in carrying out this study are (i) PDT, a highly scalable, radiation-transport

code from Texas A&M University, that solves that full Boltzmann Transport Equation, but which lacks modules to

calculate material hydrodynamics, and (ii) the CRASH code, developed during the course of the CRASH project,

which is also highly scalable. It is a flux-limited-diffusion-based radiation-hydrodynamics code with the ability to

simulate the evolution of a radiation-hydrodynamic system relevant to the CRASH project.

To gain insight into the error associated with flux-limited diffusion, we constructed a suite of code-to-code-

comparison test problems. This suite consists of analytical and near-analytical tests in the diffusion regime (where

transport and diffusion are expected to produce nearly identical solutions) as well as tests that are more reflective of

the physical conditions found within the CRASH experiment.

In performing a code-to-code comparison that involves codes based on different underlying equations, several con-

cerns arise. Because of the dimensional reduction that is fundamental to radiation-diffusion approximations, diffusion

and transport problems generate results in different solution spaces. The question then arises as to how one performs

a meaningful comparison. Of additional concern, and also inherent in dimensional reduction, is the need to add, what

are essentially, ad hoc features to a diffusion model (e.g., limiters, diffusion coefficients). Another concern involves

consistent treatment of matter–radiation energy exchange: Except for simple problems, collision integrals cannot be

made fully consistent between models.

Aside from differences already listed, there are also algorithmic and code-implementation differences between the

codes that we needed to consider before drawing meaningful conclusions. In general terms, these include issues such

as discretization, time-step selection, and solution methods. The mode in which a code is used for a given test problem

can vary significantly from the mode that is used for production calculations.

Finally, there are operational considerations. A test problem that is easy to set up and run for one code can be

difficult for another. These differences can be extreme enough to preclude any ability to run a comparison test for a

meaningful length of time. An example of this, relevant to radiation transport, is diffusion-regime problems. Diffusion-

based algorithms are set up to run diffusion-regime problems efficiently. However, even allowing for the much larger

number of variables solved in transport calculations, diffusion-regime problems are often computationally taxing on a

transport code.

5.1.1 Testbed for the comparison study

In most conceivable regimes encountered in high-energy-density physics, radiation is properly described by the Boltz-

mann Transport Equation (hereafter, transport equation), which describes the evolution of radiation through six-

dimensional phase space—three spatial and three momentum dimensions. For the purpose of ease and speed of

computation, flux-limited diffusion (FLD) has been developed as an approximation to the full transport equation. In

a flux-limited formulation, two of the angular dimensions of momentum space have undergone averaging, which re-

sults in dimensional reduction. As an approximation, it sacrifices solution accuracy as well as the ability to describe

radiation in complete generality.
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The transport equation, as used by PDT, can be written in mixed-frame form as

1
c

∂ I(r,Ω̂,ε, t)
∂ t

+ Ω̂ ·∇I(r,Ω̂,ε, t)

=
1

4π
ρ(r, t) j(r,ε, t)−κ(r,ε, t)I(r,Ω̂,ε, t)

+ρ(r, t)
u(r, t)

c
·C(r,Ω̂,ε, t) ,

(227)

where I is the specific intensity, expressed as a function of position r, time t, Ω̂ the vector solid angle, indicating

the direction of photon propagation, and ε the photon energy. The material density is given by ρ , and j and κ are

the material emissivity and opacity, respectively. In the event that the background material is moving relative to the

laboratory frame, the quantity C contains the information needed to convert terms containing comoving emissivities

and opacities for use in inertial-frame equations. For the problems we have considered in this study, the material

velocity u is always zero. Thus, we ignore the distinction between laboratory and comoving frames.

The radiation module in the CRASH code is formulated using multigroup flux-limited diffusion. The formal

derivation is constructed in the comoving frame, where the zeroth angular moment is taken of the boosted transport

equation. (Although physically equivalent, the boosted equation on which this FLD derivation is based has a different

form from Eq. 227.) Upon dropping terms of higher order than u/c, and substituting Fick’s Law diffusion for the

radiative energy flux density F, we obtain the monochromatic radiation energy equation

∂Eε

∂ t
+∇ · (uEε)−∇ · (Dε ∇Eε)−ε

∂

∂ε
(Pε : ∇u) = 4π jε − cκ

Planck
ε Eε . (228)

Here, Eε is the monochromatic radiation energy density (in units of energy per unit volume per unit spectral energy

interval), which is the zeroth angular moment of I, P is the radiation pressure tensor, which is the second angular

moment of I, ε is the spectral photon energy, jε is the radiative emissivity of the matter and κPlanck
ε is its Planck mean

opacity, each at photon energy ε . We note, again, that for problems of interest in this study, the material velocity, u, is

always zero and, hence, the term in ∇u vanishes. The monochromatic diffusion coefficient is given by

Dε =
λε c

κRoss
ε

, (229)

where κRoss
ε is the Rosseland mean opacity at photon energy ε , and λε is the flux limiter used in the CRASH code. For

this limiter, we have used the well-known prescription of Larsen,

λ
Larsen
ε =

1[
3n +

(
1

κRoss
ε

|∇Eε |
Eε

)n]1/n , (230)

in its n = 2. form. As part of the study, we also investigated heterogeneous diffusion and the effects of the treatment

of diffusion-coefficient interpolation across cell interfaces in high-energy-density-physics (HEDP) regimes.

In the foregoing, three opacities appear, the Planck mean, the Rosseland mean and, in Eq. 227, an opacity that is,

as yet, unspecified. In diffusion theory, use of σRoss yields the correct spatial energy transport in the diffusion limit,

while σPlanck yields the correct local balance of matter–radiation energy exchange. This introduces a choice as to

which opacity to assign to Eq. 227. In the results we present here, we follow a frequently used convention and employ

the Rosseland mean. Because the Rosseland formulation is based on a harmonic average of opacities over a spectral
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range, it tends to make matter appear more transparent to radiation than the Planck mean, especially if the radiation

spectrum is insufficiently resolved.

Details of the CRASH code are presented elsewhere in this report. PDT, the transport code used in this study,

is a deterministic radiation transport code, where the specific intensity can be computed in either a multigroup or

spectrally integrated gray version. In the code comparisons we consider here, both multigroup and gray transport

modules are used. PDT uses a discrete-ordinates discretization to describe the direction of radiation propagation.

In all the simulations reported here, 256 angles have been used. Spatially, PDT uses a discontinuous finite element

method and is fully implicit in time.

For this study, all problems in which the CRASH code is used are run in the hydrostatic limit. Similar to PDT,

the radiation energy can expressed in either a multigroup or gray formulation. Both are used here. As outlined above,

the flux-limited diffusion approximation sacrifices the ability to resolve the angular dependence of radiation. Instead,

radiation is constrained to propagate in the direction of the negative gradient of Eε .

In all results reported here, both codes use vacuum boundary conditions, where the specific intensity (or an approx-

imation to it, in the case of FLD) drop to zero outside the solution domain. Vacuum boundary conditions introduce

special issues in FLD codes, which we examined in the context of our current test suite.

To help better understand discrepancies between the results of transport and diffusion calculations, both PDT and

CRASH have been outfitted with the capability of tracking energy flow and its conservation throughout the compu-

tational mesh. In addition, bookkeeping is available to track radiative energy flow off the mesh. This is especially

important for gaining insight into the results some test problems based on the CRASH experimental setup. Since the

CRASH-experimental domain contains many regions that are in the translucent and free-streaming regimes, a great

deal of radiation flows off the mesh—both in test problems as well as in realistic radiation-hydrodynamic simulations

of the full CRASH experiment.

5.1.2 Code-comparison problems and results

The starting point for our code-to-code comparison were infinite-medium test problems. Transport and diffusion

should agree almost exactly for these problems, since none of the physical quantities has spatial dependence. Quanti-

ties in infinite-medium problems evolve as a result of non-zero source terms, which take similar forms in both transport

and diffusion when spatial dependence is absent. Since such tests are relatively simple to construct, any discrepancy

between codes can be used to uncover possible code implementation issues and to check on the equality of local rates

for relevant physical processes. As part our testing, we ran a number of infinite-medium code-comparison problems

and found precise agreement between PDT and CRASH, as expected.

The next step in adding complexity to our code comparison was incorporating spatial dependence into the tests.

Radiation fronts were used to test wave propagation and the implementation of transport coefficients. Marshak waves

were used to test both wave propagation and local rates. Both codes also have the option of adding heat sources to the

matter. This mechanism can be used as a proxy for shock heating. Throughout the problems in this class, we used

gray transport and simple analytic opacities. However, to reflect the conditions we face in more realistic problems,

opacities were allowed to vary sharply across an interface.

Once satisfactory agreement was achieved on simpler tests, the next step was to set up test problems that more

accurately reflected the actual CRASH experiment and its computational models. Agreement here was not expected
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to be as close as in diffusion-limit problems. This is because much of the computational domain in CRASH is in the

intermediate transport regime (i.e., neither diffusive nor free streaming). It is here where diffusion is known to be a

poor substitute for full transport. Assessing the importance of any observed discrepancies in these problems has been

a key goal of our investigation.

5.1.2.1 Diffusion front

Figure 103: Images of the diffusion front problem described in Section 5.1.2.1, showing the initial electron-

temperature (Telec) profile (left) and the radiation-temperature (Trad) profile (right) after 3.0 ps of evolution. PDT

results are shown by the solid maroon line; CRASH results are shown in the dashed blue line. At 3.0 ps, both Trad

profiles are virtually identical, and the dashed curve is difficult to discern.

One of the most straightforward tests of radiation propagation is the simulation of a diffusion wave. This test is

similar to the classic light front problem except that it is run in the diffusion, rather than free-streaming limit. Our

version of the problem is constructed using gray transport in both codes. The test is run in a 1D medium of uniform

density 1 g cm−3, which extends from 0–1.0 mm. Initially, the medium is set to have identical electron and radiation

temperatures (Telec and Trad, respectively) of 1.0 eV, except for a central strip extending from 0.4–0.6 mm, where

Telec = Trad = 100 eV. (The initial setup for Telec is shown in the left image of Fig. 103.) In this test, we use the hot

central strip as the source of radiation that initiates the front. The cooler regions are modeled as a medium in which the

matter–radiation interaction is restricted to purely elastic scattering. Since neither CRASH nor PDT includes scattering

modules, scattering is simulated by appropriate settings of microphysical parameters.

For CRASH, we set the opacities such that

σRoss =


104 cm2 g−1 x < 0.4 mm;

x > 0.6 mm

105 cm2 g−1 0.4≤ x≤ 0.6 mm

(231)

σPlanck =


0 x < 0.4 mm;

x > 0.6 mm

105 cm2 g−1 0.4≤ x≤ 0.6 mm.

(232)
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Setting σPlanck = 0 outside the central strip insures no matter–radiation energy exchange occurs in this region, while

a finite σRoss ensures that diffusion takes place in a manner consistent with elastic scattering being the sole source of

opacity.

As noted earlier, the equation of radiation transport (Eq. 227) contains only one kind of opacity. For the purposes

of the present test, we set its value as follows:

σ =


104 cm2 g−1 x < 0.4 mm;

x > 600 mm

105 cm2 g−1 0.4≤ x≤ 0.6 mm.

(233)

In PDT, in the cool regions, elastic scattering is modeled differently: matter–radiation energy exchange is effectively

turned off by setting the specific heat in the cool regions to zero.

The right-hand image of Fig. 103 shows Trad in the system after 3.0 ps of evolution by both codes. (Telec is

essentially unchanged from its initial values.) The two curves, representing PDT and CRASH results, are virtually

identical. We note that the diffusion time scale for this problem is given by tdiff = l2/D ∼ 10 ns, where l ≈ 0.1 cm.

In contrast, the free-streaming time scale is tfs = l/c ≈ 3 ps, which, with our results, confirms that we are indeed

computing in the diffusion limit.

5.1.2.2 Marshak wave

As a modification to the diffusion-front problem described above, we next allow emission–absorption in all regions of

the computational domain. This allows us to follow the evolution of a Marshak wave. In the test described here, we also

include a heat source in the central strip, which adds internal energy to this region at a rate of 4.25×1033 eV cm−3 s−1.

The initial temperatures are identical to those in the diffusion-front problem: Telec = Trad = 100 eV within the central

strip; Telec = Trad = 1 eV elsewhere.

Since we find the Marshak wave has a much slower propagation speed than the diffusion front, we lower the

opacity in the initially cooler region to allow the problem to be calculated in a reasonable time. Thus, for both CRASH

and PDT all opacities are set as

σ =


103 cm2 g−1 x < 0.4 mm;

x > 0.6 mm

105 cm2 g−1 0.4≤ x≤ 0.6 mm.

(234)

Lowering the opacity in the cooler regions reduces the diffusion time scale to∼ 1 ns, which is still large relative to the

free-streaming time scale.

Figure 104 shows this system after 100 ps of evolution. Although agreement between diffusion and transport is

good, there are small discrepancies apparent. Most visible are differences between both Telec and Trad in the central

strip. CRASH shows consistently higher temperatures in this region. At least part of this disagreement may be

explained by differences in the energy-transfer mechanism between diffusion and transport. This difference creates a

surface vs. volume effect: At the beginning of the calculation, the radiation-energy density is a pure step function. For

diffusion, energy can flow only where there is a gradient in radiation energy. This occurs only at the step—the surface

of the strip. In contrast, full transport constrains the flow of radiation only via the opacity of the medium. This allows
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Figure 104: Results for the Marshak wave problem described in Section 5.1.2.2, showing electron-temperature (Telec)

profiles (left) and the radiation-temperature (Trad) profiles (right) after 100 ps of model evolution. PDT results are

shown by the solid maroon line; CRASH results are shown by the dashed blue line. At 100 ps, results for both Telec

and Trad profiles agree well, but are not identical. Differences in energy transport between diffusion and full transport

are the likely cause of the discrepancies.

emergent radiation to have originated directly from within the volume of the strip. This explanation is also consistent

with our observation that Trad is slightly higher in the initially cool medium in PDT relative to CRASH.

5.1.2.3 1D CRASH-based problems

A key element of helping determine the error in using FLD in the CRASH project has been the construction of a set of

realistic test problems that, in a hydrostatic setting, can compare the results of diffusion and full transport. A schematic

of the setup of two classes of such tests is shown in Fig. 105. In the problems based on this setup, the geometry of

the CRASH shock tube is approximated by a 2D Cartesian central cross-section of the tube. The domain consists of

regions containing the same materials in approximately the same configuration as used in the CRASH experiment (Be,

Xe, polyimide, and Au).

Throughout the simulations, realistic opacities, using the CRASH opacity tables, (as developed by CRASH team

member I. Sokolov) are employed. As shown in the figure, a heat source acts as a proxy for shock heating, adding

4.25 ×1033 eV cm−3 s−1 to the internal energy of heated area. Initially, Telec = Trad = 1.0 eV.

In the first set of results we describe here, we restrict ourselves to a horizontal 1D cross-section of the domain

shown in red in Fig. 105, where a cross-section has been taken halfway through the vertical extent of the tube (as

shown by the blue dotted line). In this 1D longitudinal version of the problem, there are two materials present—Be and

Xe. For this test, we set the specific heat capacities as cBe
V = 1.1×1019 eV g−1 K−1 and cXe

V = 9.9×1017 eV g−1 K−1.

Figure 106 shows the density profile (which remains constant throughout the simulation) and the initial Rosseland

gray opacity (which the changing temperature affects as the system evolves). Electron heat conduction is not included

in these calculations. Vacuum boundary conditions are used by both codes.

Agreement between transport and diffusion is considerably better in multigroup calculations than in gray. (See

Myra and Hawkins [2013] for details.) In Figs. 107–110, we show calculations using both PDT and CRASH, which

have been run using 10 logarithmically spaced energy groups. (The total spectrum is bounded by 1.0 eV and 20.0 keV.)
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Figure 105: A schematic diagram showing a class of test problems, based on the CRASH experiment, which is

used as a method to quantify the error associated with using flux-limited diffusion instead of full transport in CRASH

simulations. Shock heating is approximated by a heat-source, which is active in the region marked as “Shocked Xe,”

near the center of the diagram. Only the results from two types of 1D calculations are presented in this report. In the

first type, the single dimension corresponds to the 1D lineout shown as a red dotted line in the figure. In the second

class, the 1D computational domain corresponds to the blue dotted.

Figure 106: For the 1D CRASH-based longitudinal problem, the density profile (which remains constant throughout

a simulation) is shown in the left-hand figure. The initial Rosseland opacity for a gray calculation is shown at the

right. Since we are using realistic material opacities in this problem, these values will change as the system evolves,

reflecting their dependence on the changing Telec.
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Figure 107: Agreement between transport and FLD on the 1D CRASH-based longitudinal problem improves with

number of groups used in multigroup radiation–shown here for 10 groups. The comparison is at t = 2.0 ps. Results of

radiation transport (maroon, solid curve) using PDT and flux-limited diffusion (blue, dashed curve) using the CRASH

code. Vacuum boundary conditions are used for both codes.

Figure 108: Agreement between transport and diffusion solutions continues to be good for the 10-group version of the

1D CRASH-based longitudinal problem. Here, the comparison is at t = 5.0 ps, as advanced from the results shown in

Fig. 107. PDT transport results are plotted in the maroon, solid curve and CRASH FLD results are in the blue, dashed

curve.
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Figure 109: By t = 20.0 ps, shown in this figure, transport and diffusion are starting to show some noticeable

disagreement for the 10-group version of the 1D CRASH-based longitudinal problem. PDT transport results are

plotted in the maroon, solid curve and CRASH FLD results are in the blue, dashed curve.

Figure 110: By t = 50.0 ps, shown in this figure, transport and diffusion solutions have significantly diverged for

the 10-group version of the 1D CRASH-based longitudinal problem. Also noticeable is the significant signature that

radiation discrepancies have imparted on the matter, as shown by Telec, on the right. PDT transport results are plotted

in the maroon, solid curve and CRASH FLD results are in the blue, dashed curve.
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Figure 111: Initial conditions for CRASH-based transverse 1D problem in density (left figure) and electron and

radiation temperatures (right figure). The domain for this problem is shown by the dotted blue line near the center of

Fig. 105. The diffuse area on the left side of the domain corresponds to the center of the shock tube in the full CRASH

problem. Here, the temperature is initially set to 100 eV for both matter and radiation. The denser plastic region,

labeled as “Pl” corresponds to the plastic tube in the CRASH experiment. The temperatures here are initially set to

1 eV. Finally the diffuse region on the right is a near-vacuum, which is is approximated by cold diffuse plastic.

Agreement between transport and diffusion is excellent at 2.0 and 5.0 ps; it is good at 20 ps; however, by 50 ps,

substantial divergence is evident in both Trad and Telec. In analysis made subsequent to the original publication of

these results, subtle differences between the codes in how vacuum boundary conditions are implemented may be a

contributing factor to the worsening agreement with time. In this set of problems, by 50 ps, a considerable amount of

energy has left the grid in both the transport and diffusion versions of the problem. Additionally, since transport and

diffusion propagate energy at slightly varying rates within the mesh, by the time the first waves reach the boundaries,

they will look different in each code. Hence, even if extrapolation lengths are identical in the transport and radiation

codes, the rate of energy flow will not be. Once that situation obtains, the discrepancies between solutions continue to

mount.

Another source of discrepancy between transport methods concerns the choice of opacity in the calculations. As

mentioned above, use of the Rosseland opacity ensures accurate transport of radiative energy in the diffusion limit,

while using the Planck opacity ensures accurate matter–radiation energy exchange locally. In each calculation, we ran

the CRASH code in two different modes: (i) using Planck opacities for emission–absorption and Rosseland opacities

to calculate diffusion coefficients, as is the standard mode for full-scale CRASH simulations; and (ii) using Rosseland

opacities for both quantities. (In this study, all PDT calculations use only Rosseland opacities.) For the results we

present in this report, CRASH has been run in mode (ii), which gives us significantly better agreement with PDT. The

discrepancy between Planck and Rosseland results likely indicates that the energy-group structure is insufficiently fine

to resolve important features in the material opacity profiles.

For the CRASH project, accurate solution for Telec is considered more important than for Trad since it is material

properties that are directly measurable by experiment. Obviously, however, Trad and Telec are closely coupled.

158



Figure 112: Results showing Trad (top left)

and Telec (top right) for the CRASH code run-

ning the transverse problem, after 0.05 ps of

evolution. On the immediate left are cor-

responding PDT results. A “prompt” radi-

ation front has propagated into the plastic

in both sets of results, though PDT shows

greater penetration—to the point of signifi-

cant propagation into the vacuum region. In

both codes, Telec is essentially unchanged.

The second set of CRASH-based test problems we investigated represented a transverse lineout within the CRASH

shock tube. This region is indicated by the vertical dotted blue line near the center of Fig. 105. It serves to test the

effect of hot x-rays incident on an initially cool plastic wall. With this setup, we can compare the differences between

radiation transport and diffusion in the response of the wall. This details of the response of the wall is important due to

wall ablation and the formation of a wall shock, which strongly influences the primary shock in the CRASH problem.

In Fig. 111, the diffuse area on the left side of the domain corresponds to the center of the shock tube in the full

CRASH problem. Here, the temperature is initially set to 100 eV for both matter and radiation. The denser plastic

region, labeled as “Pl” corresponds to the solid portion of the plastic tube in the CRASH experiment. The temperatures

here are initially set to 1 eV. Finally the diffuse region on the right is a near-vacuum region that is approximated by

cold diffuse plastic. For the results presented here, multi-group radiation was used, with five energy groups spaced

logarithmically between 1 eV and 20 keV.

Results for both CRASH and PDT are shown in Figs. 112 and 113 at 0.05 ps and 200 ps of evolution, respectively.

Although there has been considerable evolution of the radiation field by 0.05 ps, there is also considerable discrepancy

between the results of the two codes. By this time, a “prompt” radiation front has propagated into the plastic in both

calculations, though PDT shows greater penetration of the plastic—to the point of there being significant propagation

into the vacuum to the right of the tube. In both codes, Telec is essentially unchanged.

In contrast, by 200 ps, CRASH and PDT results agree well. At this time, within the dense plastic, evolution of Trad

and Telecis are seen to be driven by the competing effects of radiation transport through the plastic wall and thermal
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Figure 113: Results showing Trad (top left)

and Telec (top right) for the CRASH code run-

ning the transverse problem after 200 ps of

evolution. Corresponding PDT results for

Trad and Telec are immediately to the left. At

this point in the calculation, CRASH and

PDT results agree well.

equilibration between matter and radiation. With the 100-eV boundary condition on the left-hand edge, and given

enough time, a steady-state temperature of Trad = Telec = 100 eV will eventually obtain.

An interesting contrast between the results of the transverse problem shown in Figs. 111–113 and the longitudinal

problem shown earlier in Figs. 106–110 is that in the longitudinal case, the agreement between CRASH and PDT is at

its best early in the calculation, while in the transverse problem, agreement improves with time. As mentioned above,

an important contribution to late-time divergence in the longitudinal problem likely results for significant energy flow

off the mesh as time advances. The setup of the transverse problem setup does not allow this to occur to any great

extent over the time scales of interest. As a result, we conclude that the transverse problem constitutes a better code-

to-code comparison test. In analogy, it is possible to revise the longitudinal problem to exhibit the same behavior—a

process in which we are currently engaged [Myra and Hawkins, 2013].

5.1.3 CRASH-code issues uncovered

5.1.3.1 Heterogeneous Diffusion

In computational problems in high-energy-density physics, opacities may vary by significant amounts from cell to

cell. Commonly, these large changes occur due to the presence of material interfaces and/or sharp changes in density

between adjacent cells. In these situations, obtaining a physically meaningful radiative flux from diffusion-based

radiation codes requires special care.

In finite volume codes, because of where physical quantities are defined on the computation mesh, it is usually

most natural to evaluate diffusion coefficients at cell centers. In contrast, calculation of radiative fluxes most naturally
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takes place at cell interfaces. The need for a diffusion coefficient in evaluating a flux therefore requires an appropriate

interpolation from among the neighboring cell-centered diffusion coefficients for use at a cell interface.

A number of interpolation treatments are in use in these heterogeneous situations The CRASH code, in its final

version, evaluates the diffusion coefficient at an interface as an arithmetic average of the two adjacent cells. Although

this is probably adequate for many situations, it clearly leads to an incorrect result in any situation where two neighbor-

ing cells have opacities that vary by several orders of magnitude. (An arithmetic average vastly overestimates radiation

transport within the opaque region and leads to unphysical penetration of the opaque material and, potentially, spurious

ablation—a potential issue at the interface between the tube interior and inner surface of the plastic tube.

As an ancillary activity to the PDT-CRASH code comparison study, we investigated the effect of this interface-

implementation error. When replaced with a more accurate harmonic-mean of diffusion coefficients, which is a better

approach that yields continuity of flux across an interface, we found that use of the harmonic mean eliminated the

spurious diffusion and the incorrect front speed seen with arithmetic averaging. Thus, we recommend that in a multi-

material HEDP simulation, treatment of interfaces deserves more attention than afforded by the CRASH project.

Details of these findings are presented elsewhere [Myra and Hawkins, 2013].

5.1.3.2 Boundary conditions for radiation diffusion

Setting boundary conditions in radiation-diffusion codes presents interesting implementation issues. This is because

boundary conditions need to be based on the physics of the problem but, in the case of the radiation-diffusion approx-

imation, it is physics that cannot be adequately described within the formalism of the approximation.

As another ancillary activity to our code comparison study, we investigated the effect of CRASH’s implementation

of the radiative boundary conditions that permit no incoming radiative flux—the so-called vacuum conditions. The

CRASH code, in its final version, evaluates the cosine of mean scattering angle of emergent radiation, 〈µ〉, at each

boundary in the pure diffusion limit (i.e., 〈µ〉 = 1/2). This is consistent with the familiar Mashak-Milne condition.

We find, however, that in many problems in the HEDP regime—in particular, at the far end of the shock tube in

the CRASH setup—radiation behaves in a free-streaming fashion and is better approximated as 〈µ〉 = 1. Although

radiation effects at the far end of the shock tube would seem to play a minor role in the overall evolution of the system,

we have demonstrated [Myra and Hawkins, 2013] that this is not necessarily true, and its effect is measurable.

5.1.4 Conclusions of the CRASH/PDT Study

Code-to-code comparison of the radiation-transport code, PDT, and the radiation-hydrodynamic-diffusion code, CRASH,

proved challenging. Reasons for this included such issues as (i) the two codes being based on different underlying

equations, resulting from different underlying approximations to the physical phenomena they track; (ii) test-problem

design issues in yielding tractable problems for both codes using realistic computational resources; (iii) issues in

choosing comparison metrics, given that each code evolves different physical quantities that cover solution spaces of

differing dimensions, (iv) operational considerations, given that each code is developed and maintained at different

institutions, and (v) operational constraints preventing implementation of a hydrodynamics module to incorporate into

PDT.

The above difficulties notwithstanding, we found that CRASH and PDT produce good agreement in regimes where

they should be expected to agree closely, i.e., in the diffusion and free-streaming limits. In problems that more closely
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Figure 114: Reaction rates in xenon at Te = 50 eV as functions of the atomic density, Na. The LTE approximation is

applicable if the collisional recombination dominates over photo-recombination, i.e. at Na > 1020cm−3

represented the physical conditions found in the CRASH problem, we found the level of agreement conditional on

the specifics of the test problem. However, we can fairly conclude that the variation in results that one would observe

among different “reasonable” implementations of flux-limited diffusion are at least comparable to variations between

radiation-diffusion, as implemented, and full transport.

A significant disappointment was our inability, within the resource and managerial constraints of the project, to

make a comprehensive set of comparison tests in multiple spatial dimensions. Without such tests, it is difficult to

conclude whether use of radiation transport (rather than diffusion) for a complete CRASH simulation would have a

measurable effect on some phenomena important to the CRASH measureables (e.g., radiative wall ablation, wall-shock

development, and its affect on the primary-shock evolution).

Finally, this portion of the project allowed a “double check” of the implementation of various details of radiation

transport in the each code, which allowed us to uncover some shortcomings and bugs. Like the effect of full transport,

the magnitude of shortcomings in the CRASH code on a complete CRASH simulation is uncertain. Although obvious

in relevant test problems, the effects of these shortcomings may be washed out by other approximations elsewhere in

the code. The solution-convergence results presented elsewhere in this document support this observation.

5.2 Assessment of Non-LTE effects

In calculating the equation-of-state functions as well as the opacities, we produced the tables used in the base CRASH

code on the assumption that these quantities may be calculated assuming the radiation to be in thermal equilibrium

with the plasma. Detailed balance occurs as the part of LTE, so that all processes involving the photons (such as

photoionization and photorecombonation) balance each other separately of the electron-ion collisional processes (such

as 3-body recombination and collisional ionization). Prof. G. Moses in the course of the annul review observed that the

CRASH radiative shock system might not satisfy the validity condition for LTE. He provided Fig.114, which shows

that, for Xe at an electron temperature Te = 50 eV, the atomic density Na must exceed 1020cm−3 for LTE to be valid.
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This would require only fourfold compression of our Xe gas, whose initial atomic density is 3 ·1019cm−3. In addition,

the threshold density for the validity of LTE drops rapidly as the temperature decreases. On this basis, we would

expect that LTE would ve valid or very nearly so for the CRASH radiative shock.

In contrast, it is well known that laser-heated coronae are not in LTE. These regions are also optically thin, so the

resulting radiation rarely has significant consequences. However, it is possible that the resulting difference in electron

temperature might create some differences in ablation rate. In the context of the overall modeling by the CRASH code,

these effects show up primarily in the Laser Energy Scale Factor necessary to reproduce the data. So long as these

effects were consistent and one did not scale an application from one regime of laser irradiance to another, this would

not be expected to affect one’s ability to assess the predictive capability of the code.

It is also the case that the use of an LTE assumption in a code with a multigroup treatment of radiation is logi-

cally inconsistent. One introduces a multi-group description for the radiation energy density, with the energy density

of group i being U i
rad, and explicitly assume that these energy densities differ from the black-body-radiation energy

densities, Bi
rad(Te), integrated over the same photon energy groups. The ratios, U i

rad/Bi
rad, may provide a quantita-

tive estimate of the accuracy of the Local-Thermodynamic-Equilibrium (LTE) approximation. Under optically thick

conditions, i.e. when

U i
rad/Bi

rad ≈ 1 (235)

for the energy group carrying significant energy density, the LTE approximation works very well.

In the optically thin media Eq.(235) may not hold, so that the radiation multi-group energy densities may be much

less than the Planckian energy density calculated at the electron temperature. Such situation is typical, say, for the

solar corona or laser-heated corona. Ahead of the shock wave in the CRASH system the opposite inequality holds

and U i
rad/Bi

rad > 1, as has long been known to be expected for radiative shocks. The radiation “temperature” there

much exceeds the electron temperature. Even when Eq.(235) does not hold and the system does not have detailed

balance, the LTE approximation may be still applicable to equation-of-state calculations. Specifically, this is true at

high densities. The reaction rates for the collisional processes are proportional to a second or third (for three-body

recombination) power of density, while the NonLTE radiation recombination is linear in density and comparatively

negligible at high densities. Therefore, the presence of non-equilibrium radiation at high densities may not affect the

accuracy of the LTE approximation.

Motivated by the above considerations, and at the behest of our review committe, we proceeded to implement a

model in CRASH to account for the non-LTE effects and assess their impact. Specifically, we merged the RADIOM

code by Michel Busquet to the BATSRUS/CRASH code. The model implemented in the RADIOM reduces the non-

LTE effects to the calculation of the effective temperature,

Tz = Tz(Te,Ne,U i
rad/Bi

rad) (236)

This temperature is used to characterize the degree of the plasma ionization and electron excitation, hence, it can

be used as an input parameter for the tabulated LTE equation of state. Particularly, the internal energy density,

ELT E(Tz,Na), may be calculated once the effective temperature, Tz is known. However, the kinetic energy of free

electrons is still assumed to be characterized by the kinetic electron temperature, Te, using the following correction

equation:

ENLT E − 3
2

kBρZ∗(Tz)(Te−Tz) = ELT E(Tz,Na) (237)
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Figure 115: Non-LTE ionization degree, Z∗ = Ne/Na, in xenon (left panel). The radiation multi-group energy ratios,

U i
rad/Bi

rad are assumed to be zero. Right panel presents the same plot for LTE equation of state.

In the left panel of Fig.115 we present, for Xe, the distribution of the ionization degree (the ratio of electron to

atomic densities) as a function of log10(Te[eV]) and log10(Na[m−3]) for the extreme limit of non-LTE effets, which

corresponds U i
rad/Bi

rad(Te) = 0. The right panel shows the distribution obtained from the LTE EOS. As anticipated, for

the conditions of the radiative-shock precursor (log10(Te[eV]) < 1.8 and Na[m−3] > 3×1025) there is no perceivable

difference. This is also the case for the post-shock conditions with an electron density 10 to 10 times higher and an

electron temperature no more than 0.15 keV. For hotter, less-dense Xe plasmas, toward the right edge and lower righr

corner of the plot, the differences become larger.

In order to preperly implement the RADIOM model in CRASH, we had to pay special attention to the fact that our

semi-implicit multi-group radiation diffusion solver approximates the differences of the internal energies densities in

terms of the specific heat coefficients. Therefore, the EOS that includes NLTE effects should provide reliable values

for the specific heat coefficient, in a thermodynamically consistent manner. The specific heat is the (partial) thermody-

namic derivative of the internal energy density with respect to temperature, at constant mass density. However, while

introducing an effective temparature Tz different from the real electron temperature the concept of the specific heat

must be revisited. We have done this. As one can see from Eq.(237), the derivative with respect to temperature of the

internal energy involves the derivative, ∂Tz/∂Te, which may be approximated as Tz/Te with reasonable accuracy.

Although the thermodynamically consistent computation of the specific heat is an extra requirement, we can also

benefit from its implementation. Indeed, in most occurences a code based on a conservative scheme should solve the

inverse equation of state, that the unknown electron temperature should be calculated implicily from the given internal

energy density. Once the calculation of the temparature derivative (the specific heat) is implemented consistently, the

temperature can be solved using the reliable and rapidly converging Newton-Rapson procedure, which was impossible

until we implemented the specific heat computation.

Enabled by this newly implemented Newton-Rapson-based algorithm our work was first focused on verifying that

the coupled CRASH-RADIOM code reproduces the LTE results correctly. To do so, we artificially set Erad/B = 1 it

the data that CRASH passed to RADIOM. We designate results from this model as ’fake-LTE’ model and compared

these results with those from the standard, LTE, CRASH code, as shown in Fig. 116.
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Figure 116: Electron temperature distributions in the CRASH target at the time 0.9 ns. Top panel: the output from the

standard version of the CRASH code (no NLTE effects). Bottom panel: the coupled CRASH-RADIOM code, with

Erad/B set to 1 in the data passed to RADIOM. There is a slight difference in color scale, reflecting the behavior in the

laser corona discussed in the text.

Doing this comparison revealed an issue that we had not anticipated. To make it feasible to simulate the CRASH

PY5 experiment, which is inherently 3D, it is important not to carry any more energy groups than needed. We

developed present group structure to optimally resolve the structure of the STA Xe opacities using a computationally

viable number of groups (30) and a physically sensible maximum energy (20 keV). The RADIOM code, however, is

written to require the presence of energy groups up to 20 times Te. In zones where this condition is not met, the values

of Erad/B are set to zero by RADIOM in groups for which no energy density is available. This approach is sensible

for NLTE calculations, but it prevented the ’fake-LTE’ test from producing LTE results in zones in the laser corona for

which Te > 1 keV.

Even so, the test was a success, as follows. We found that in zones for which Te < 1 keV (where 1 keV=
( 1

20

)
·20

keV, 20 keV being the boundary of the radiation energy grid) the computation of Tz gives Tz = Te identically, as it

should for LTE. This corresponds to the region that is not red (approximately to x > 0) in the figure. In the laser

corona, the maximum temperature for for the ’fake-LTE’ result in 3.3 keV, which is higher than that for the LTE

run (2.9 keV). When accounting for this difference in maximum temperatures (accordingly, all contours in the bottom

panel corresponds to somewhat higher values than those in the top panel) the results look the esame for the temperature

range Te ≤ 1 keV.

Then we performed one of our standard tests (in r− z geometry, with 3D distribution of the laser beams) with the

time duration reduced to 1.3 ns. In Fig.116 the electron temparture distributions are presented, for the LTE version

of the code (standard CRASH) in the top panel and the full NLTE result (coupled CRASH-RADIOM) in the bottom

panel. We see that the account of the NLTE effect produces an observable shortening of the length of the precursor.

This might potentially reduce the expansion that drives the wall shock. Thus there are two effects that might lead

CRASH to overpredict the wall-shock separation from the wall – NLTE and the use of a diffusive radiation transport

model. There is some evidence of this, discussed in Sec. 6.2.2. Despite this difference, examination of the shocked
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Figure 117: Electron temperature distributions in the CRASH target at the time 0.9 ns. Top panel: the output from

the standard version of the CRASH code (no NLTE effects). Bottom panel: the coupled CRASH-RADIOM code (the

NLTE effects are included). Note that the maximum temperature for the NLTE result is higher than that for the LTE

run, therefore, the scales for the figures are somewhat different.

matter in the two simulations finds no structural differences. Since the simulations must use a Laser Energy Scale

Factor to account for other unresolved physics anyway, our opinion is that NLTE effects did not introduce significant

errors that would have impacted the predictions of the CRASH project.

Our results and observations from this study are as follows. The NLTE version of the code is slower by a factor

≥ 5. The EOS function necessary to implement NLTE effects within the CRASH structure is computationally intense.

Using the NLTE package noticably degraded the efficiency of the preconditioner. NLTE effects appear to produce

modest changes in the radiative precursor, but we do not believe that these had a significant effect on our predictions,

at least at the level achieved in the course of the project.
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6 Predictive Studies

Our predictive studies were performed in the context of the Bayesian framework established by Kennedy and O’Hagen

[2001]. This ultimately involves the use of data from code runs, in conjunction with data from physical experiments,

to construct a statistical predictive model. The code runs are performed in sets, each of which is designed to sample the

probability distributions of some specific combination of experimental parameters, physical parameters, and numerical

parameters. Examples of these are gas pressure, electron flux limiter, and number of levels of mesh refinement,

respectively. We summarize these run sets next. We then discuss the extraction of metrics, which is necessary in order

to use the computational or physical data for prediction. An example is shock location. These activities enable the

statistical analysis of the run sets, some of which are sensitivity studies and some of which produce data for prediction.

6.1 Sets of Code Runs

In practice, one cannot sample the probability distributions of all possible variables in a set of code runs that can

be accomplished in a reasonable time on available computer resources. One instead uses a combination of expert

judgement and sensitivity studies to identify which variables have a significant effect on the metrics of interest. Several

of our run sets were sensitivity studies, intended to inform the selection of variables for the run sets to be used for

prediction. Beyond the run sets described here, we also did many smaller-scale assessments of sensitivity using a few

runs to observe the sensitivity of the output to one or two input parameters. Other run sets were designed to enable

analysis via the Kennedy-O’Hagan framework. Some turned out to serve both purposes.

6.1.1 Early Run Sets

The CRASH project organized sets of simulation runs designed for various uncertainty quantification, sensitivity, and

scoping studies into groups of runs called run sets (abbreviation RS). Each run set consists of 10’s to 100’s of runs

producing 10’s to 1000’s of values of quantities of interest (QOI), with each run differing by various input parameters.

We did the following run sets:

1. Sensitivity study – 512 runs using 1D Hyades

2. Shock location study – 320 runs using 1D Hyades & CRASH 1.1

3. Shock breakout study – 1024 runs using 1D Hyades & CRASH 1.1

4. 2D shock structure study – 104 runs using H2D and CRASH 2.1

A. 3D Sensitivity study – 64 runs using CRASH 1.1 from one H2D run

5. 1D convergence study – 512 runs 1D-Multigroup CRASH 2.1 from one H2D run

6. 2D convergence study – 128 2D-Multigroup CRASH 2.1 from one H2D run

7. 2D nozzle study with large tubes – 107 runs H2D & CRASH; Gray and Multigroup

8. 2D study of sensitivity to nozzle properties – 18 runs CRASH 3.0 using laser package

9. 3D study of sensitivity to ellipticity and shape – 10 runs H2D & 3D CRASH 3.0

10. 2D shock structure study for base experiment 120 runs CRASH 3.0 (replacing RS4)

11. 2D shock structure study for base experiment 120 runs CRASH 3.2 (replacing RS10)

12. 2D shock structure study for base experiment 120 runs CRASH 3.2 (replacing RS10)
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13. 3D shock structure study for year-5 target – 3D-Gray 64 runs CRASH 3.2

14. 3D shock structure study for year-5 target – 3D-Multigroup (see discussion below)

We did four studies during our first two years, and analyzed the results in some depth as our initial work in

prediction. The results are discussed in detail below. Following an initial sensitivity study (RS1), RS2 was integrated

with our first predictive study (see Sec. 6.5). RS3 and RS4 were done in support of our combined analysis of shock

breakout from the Be disk and later shock location. We undertook to examine shock breakout because of its central

importance in determining the totol momentum available to the shock wave. RS 4 was a UQ study of 2D experimental

variations for the basic CRASH radiative shock experiment. Five parameters were varied; laser energy, beryllium disk

thickness, beryllium gamma, plastic wall opacity multiplier, and electron flux limiter. The 104 runs were initialized

using H2D for the laser phase, then run with CRASH out to 26 ns. These results were used for the methodological

development of a prediction that combined models, discussed below in Sec. 6.9.

Runset A was a 3D study in year 2 (see Sec. 6.6), intended to assess the sensitivity of the multidimensional

behavior to parameters characterizing the equations of state and opacity. The study consisted of 64 simulations at

each grid resolution varying four input parameters: the equation of state gamma for Be was varied between 1.4 and

1.66667; the gamma for Xe was varied between 1.1 and 1.4; and the opacity scale factors for both Be and Xe were

varied independently between 0.7 and 1.3.

Figure 118: Radiographs of nominal tube radius (right) and wide tube radius (left) at 13 ns

In addition to runsets assessing the sensitivity of the behavior to experimental and theoretical variations, two run

sets were performed to quantify the uncertainties of numerical parameters in the CRASH code. RS 5, initialized from

output of a single 1D hyades run provided a systematic multi-parameter numerical convergence study by varying the

number of photon groups, the minimum and maximum bounds of photon energy, the size of equation of state tables,

and mesh resolution, in the subsequent 512 CRASH runs. RS 6, featuring 128 runs, was an extension of RS 5 in

2D and varied the number of photon groups, the minimum and maximum bounds of photon energy, the size of the

equation of state tables, mesh resolution in two dimensions, and the convergence criterion for the Krylov solver. The

output was analyzed in radiographic form using integrated metrics in 2D, and determining shock position in 1D. The

integrated metrics are discussed below; they proved most useful when the fidelity of the simulations was relatively
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Figure 119: Cassini oval target pictured in orthogonal views at 14 ns.

poor. The UQ analysis based on a flexible regression fitting of the response surface determined the most efficient

group structures for use in later run sets.

RS 7 focused on variations in experimental parameters in order to scope the Year 5 capstone experiment. It was

107 2D, H2D-initialized shock tube, performed using gray radiation and multi-group radiation, with a multi-group

structure determined from RS 6. The radius of the tube was varied along with six other parameters: laser energy, laser

scale factor, beryllium thickness, xenon fill pressure, electron flux limiter, and observation time. Results at 13 and 27

ns were analyzed using feature extractions from radiographs; samples are pictured in Figure 118. These wider H2D

runs were used to initialize later run sets featuring cylindrical and elliptical nozzles.

To scope out the optimum nozzle shape for the Year 5 experiments, RS 8 was performed to investigate sensitivities

to nozzle parameters. Initialized with the CRASH laser package, these 18 2D CRASH runs were performed with both

gray and multi-group radiation. The nozzle length, post-nozzle tube diameter, and distance from the drive surface to

the beginning of the nozzle were varied and the results were analyzed using feature extraction metrics of simulated

radiographs.

Once the nozzle shape was determined with the help of RS 8, it became necessary to determine the effects of

altering the ellipticity of the tube. RS 9 consisted of 10 runs initialized with H2D, and run in 3D CRASH with multi-

group radiation. The only parameter varied in this run set was the value of the ellipticity in the range [0.5,1]. Due

to the methods of constructing elliptical tubes, both a regular ellipse and a Cassini oval were used in the modeling.

Simulated radiographs, such as those shown in Figure 119, are then analyzed from orthogonal views to determine

inherently 3D metrics to be compared to experimental data.

After the CRASH laser package was completed, a run set effectively replicating RS 4 but utilizing the CRASH laser

package in place of H2D was performed. These 120 runs were run using 2D CRASH with 2D RZ laser ray tracing, in

both gray radiation and multi-group radiation. The input parameters varied were laser energy, beryllium disk thickness,

xenon fill pressure, electron flux limiter, laser scale factor, xenon opacity scale factor, and observation time. A scale

factor on the xenon opacity replaced the scale factor on the plastic opacity after investigation of the sensitivities indi-

cated that the xenon opacity was a more important factor. The simulated radiographs were analyzed, integrated met-
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Figure 120: Results showing that RS12 spans the range of the experi-

mental data.

rics extracted, and combined with simi-

lar data from experimental radiographs us-

ing the Kennedy-O’Hagen predictive model

form described above.

We then completed a version of run set

10 (RS 10), composed of 120 input points

over a 6D input space. The input space

covers Be thickness [18,22]µm, laser energy

[3594,4060] J, Xe fill pressures [0.852,1.46]

atm, and observation times from the inter-

val [0.5,27] ns in steps of 0.5 ns. In addi-

tion the inputs cover an electron flux limiter

range of [0.02,0.1], a laser energy scale fac-

tor in [0.2,1.1] and a Xe opacity scale factor

range [0.1,10]. These runs were completed

using the 2D CRASH laser package. A sim-

ilar run set, RS 11, with improved Xe opaci-

ties and improved (3D) laser ray tracing was

designed in order to observe the consequent

improvement in the predictions. Comparison

of RS 10 and 11 (now 12; see below) could

be analyzed to assess the impact of the im-

provement in physics represented by the im-

proved opacities and ray tracing.

With the further developments of the

laser package—including the addition of 3D

laser ray tracing as well as the acquisition of high-quality opacity tables for xenon and an improved multi-group

structure, RS 11 was designed to replicate run sets 4 and 10 with the highest quality 2D CRASH model (v 3.2), but we

soon realized that some issues with table ranges were compromising the results. To avoid confusion, after correcting

the table ranges we restarted this case as RS12. Figure 120 shows that the runs in this set are spanning key QOI’s from

the physical data. The physical parameters for these 120 runs are the same as with RS 10, with tighter ranges on the

calibration parameters of laser and opacity scale factors. Similarly to RS 4 and 10, RS 12 was then used to incorporate

experimental data to make predictions of the QOI at 26 ns.

To formulate the prediction and prediction uncertainty of the Project Year 5 (PY5) experiment, we combined

information from two simulation datasets run set 12 (RS12) and run set 13 (RS13) and data from experiments on

the OMEGA laser facility. Experiments from October 2008 on OMEGA provided data of shock location and wall

shock parameters at 13 ns for a radiative shock driven down a cylindrical, 575-µm inner diameter (ID) shock tube.

Additionally shock location and wall shock parameters were measured in data taken in the same tube geometry at 27 ns

in December 2010, as well as for cylindrical, 1500-µm ID tube data near 27 ns in October 2011. The simulation data

to integrate into the predictive framework comes from RS12, 128 simulations varying parameters for the 575-µm ID ,
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cylindrical tube, and RS13, 64 simulations varying parameters for the PY5 target geometry. Because these simulations

involve handling large amounts of data, the extraction of the output data from the results is automated. The data

extraction routines, described in Sec. 6.2.2, have been designed to act both on the simulated data and the experimental

data, in order to be able to make direct comparisons. This information was combined using the Kennedy-OHagan

framework utilizing Bayesian Gaussian process emulators previously discussed, for shock location. Follow-up work

using the locations of the intersection of the wall shock and the primary shock would be possible.

The predictive process utilized experimental data and results from RS12 and RS13 to calibrate a model parameter,

the laser energy scale factor (LESF), then use the calibrated distribution for the model parameter, as well as the

information on experimental variability and uncertainty to predict the PY5 experiment with accompanying uncertainty

estimates. The design for both RS12 and RS13 contain the LESF to account for uncertainty in the ability of the

simulation to accurately model the coupling of laser energy to the shock system, at minimum because of laser-plasma

energy coupling processes that are not modeled. This model parameter was calibrated using both RS12 and RS13 and

the data in the geometry relevant to each run set. In RS12 there were 2 model parameters – LESF and electron flux

limiter – and 4 experimental parameters – laser energy, drive disk thickness, gas density, and observation time. In

RS13 there was 1 model parameter –LESF– and 7 experimental parameters – laser energy, gas density, nozzle length,

taper length, aspect ratio, tube major diameter, and observation time. The deliberate lack of experimental data for

the system in the (elliptical) RS13 geometry necessitates the inclusion of RS12 model information for calibration.

RS12 also contained a second model parameter, the electron flux limiter; however sensitivity analysis revealed that the

simulation results were insensitive to the electron flux limiter so it was set to a fixed value in RS13. (This parameter

was important in 1D simulations, but the fact that it is not important in 2D or 3D is not surprising, because the laser

energy penetrates less far in multi-D simulations with ray tracing and as a result the heat flux toward higher densities is

reduced.) For making predictions of the PY5 experiment with quantified uncertainty bounds, the calibrated distribution

for the LESF was combined with the distributions for the experimental parameters in the KOH framework to generate

the predictive distributions of the system outputs.

Figure 121 shows the radiographs from RS12. Because the output data are obtained by automated routines, bad

data from extraction routine error can emerge within the data set. Discussions between the code applications team

and the statisticians were critical in identifying the outlier points in order to remove only data where the extraction

routines had clearly failed. This also has led to discussions on the best methods for improving the extraction routines to

minimize the loss of data. Much more progress in this respect would have been possible had the project been extended.

The 3D simulations for RS13 were challenging with respect to available computing resources, but proved feasible.

Figure 122 shows radiographs along the two orthogonal diagnostic views. We evaluated a shock curvature metric,

corresponding to the curvature near the radial axis, along the direction of the major axis of the elliptical tube. This

was interesting but we did not have time to follow up on its ultimate utility. The runs were spread across two DOE

machines, Mapache at LANL and Cab at LLNL, as well as one University of Michigan cluster, Flux.

6.1.2 Run Set 14

In order to directly compare the effect of different fidelity of radiation transport model on the features of interest in

the radiative shock simulations, a subset of RS13 was carried out using the multigroup radiation transport. These runs

were initialized from 2D, RZ geometry runs to model the laser portion of the experiment, with those results mapped
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Figure 121: Tiled image of 128 simulated radiographs from the runs in RS12 at 16 ns. The array of images shows the

large variations between the many runs.

Figure 122: Example of a simulated radiograph from a run in RS13 at 27 ns. The image shows the simulated radiograph

from the major and minor axis view of the elliptical tube experiment.

to a full 3D grid with 30 groups for multigroup radiation transport to model the remainder of the simulation.

RS13 runs used 1024 cores and required between 16 and 32 hours of wall time on the Cab supercomputing cluster
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at LLNL to complete. This meant that each run needed only one or two passes through the queue in order to be finished.

Due to the increased computational cost associated with 30-group radiation transport in RS14, despite expanding to

1536 core per run, the simulations were limited to advancing approximately 0.6-1.4 ns per 16 hour time block on

Cab. This caused the time waiting in queue to become a large percentage of the overall time dedicated to the run set.

Additionally, the many, large runs quickly used the projects allocation, causing files to wait much longer in the queue

as each month went along. Because of these time constraints, only two of the RS14 runs finished and only 3 others

getting past 18 nanoseconds (See table below).

Table 13: Output times reached in the most completed runs from RS14.

File Number Last Output Time

1 18.0

3 27.0

5 25.5

7 27

17 15.5

34 12.5

36 15.0

37 12.0

59 22.5

64 15.0

Figures 123 through 125 below show a comparison between RS14 runs and their corresponding outputs in RS13.

One would not expect the radiation transport to have an impact on the basic one-dimensional hydrodynamics, and this

is confirmed in Fig. 123. Figures 124 and 125 show the vertical location of the triple point, or of the nearby shock-

shock intersection, because the vertical location of the triple point is the output metric most sensitive to the details in

the radiation transport. The figures show the vertical location in RS14 versus RS13, with the slope 1 line indicated

where the points would fall if the values were equal. Figure 124 shows the values looking at the major axis of the

target and Figure 125 shows the values for the view looking at the minor axis. As you can see, the vertical location of

the triple point is notably greater in RS14, indicating that the triple point is less separated from the wall and thus that

the wall shocks are weaker in the simulations with higher radiation transport fidelity.

6.2 Extraction of Metrics

To implement a statistical analysis that compares simulation output with the results of physical experiments, one must

first identify something to compare. This is far from trivial. If the data are obtained in the form of images, a natural step

is to implement software that emulates the function of the measuring instrument and produces an analagous image.

One then seeks somehow to compare the images. This process is fraught with challenges. Idealistic discussions often
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Figure 123: Comparison of axial shock location, in microns, between RS14, which used multigroup radiation transport,

and RS13, which used gray radiation transport. Results extracted from the two simulated radiographic views are

shown.
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Figure 124: Comparison of triple-point and shock-shock axial positions, in microns, between RS14, which used

multigroup radiation transport, and RS13, which used gray radiation transport. This shows results in the major axis

(wide tube) view.
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Figure 125: Comparison of triple-point and shock-shock axial positions, in microns, between RS14, which used

multigroup radiation transport, and RS13, which used gray radiation transport. This shows results in the minor axis

(narrow tube) view.

imagine that one might do some kind of analysis based on a pixel-by-pixel comparison, but our experience would

suggest that this may only prove fruitful on systems whose behavior is so well understood and so well modeled that

there is little point to doing predictive studies. Similarly, it would be ideal to apply an identical analysis to the raw

data from the experiment and from the simulation, but this too may well be unproductive. For sparse physical data,

experimental realities like calibration grids and scratches in film often pose few problems for manual extraction of

metrics but large problems for automated approaches. On the computational side, developing algorithms that mimic

the pattern recognition ability of the human eye and brain is notoriously difficult. This, in turn, increases the difficulty

and decreases the accuracy of automated extraction of metrics from simulation data into which realistic noise has been

introduced. This tends to lead one to make some compromises away from the idealistic approaches, because their full

implementation would be risky, inordinately expensive, and ultimately out of scope for the project.

Beyond these considerations, the fidelity of the code output to the data from the physical experiment, in particular

with regard to structure, has a major impact on which metrics will turn out to work. By design, one is varying some

input parameters over ranges that exceed those present in reality. This is especially true of uncertain physical constants.

If these variations produce variations in the output morphology, then metrics that depend on the morphology are likely

to fail. In the early years of the present project, our challenge was even larger, as we were not yet getting any results

that were morphologically consistent with the physical data. In such a context, one is drawn toward integrated metrics,

and we made progress on using these during that period. Later, when we had consistently good morphology in the

simulation output, we were finally able to return to metrics based on aspects of the structure present in the physical

data. Ultimately, though, our predictive studies were primarily based on shock location, whose identification is fairly

robust. We were in a position when the project ended to go further than this, and would have done so had funding
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Figure 126: Illustration of some of the integrated metrics adopted in year 3.

continued.

6.2.1 Integrated Metrics

Our predictive work is predicated on extracting a few scalar parameters from both experimental data (in the form

of radiographs) and from simulation data (also in the form of simulated radiographs). Because there is considerable

variability in the structures in our system, both in physical experiments and in simulations, we developed a robust set

of integrated metrics that are less sensitive to interface details. The integrated metrics provide information about the

fundamental information given by the radiographs: how much dense xenon there is, where is it located, and how much

is flowing near the edges. Within a fixed window (shown in Figure 126) we extract a set of metrics:

1. the (projected) area of dense Xe, defined as the area where the optical depth is larger than a given threshold

times the optical depth of the unshocked Xe

2. the axial centroid of the dense Xe

3. the radial rms of the dense Xe over a window extended to the tube walls (not shown in the figure)

4. the breakpoints of a piecewise constant fit with 4 to 7 segments (the first such breakpoint is diagnostic of the

shock location)

Shown in Figure 127 are the simulated radiographs from the first 64 runs of UQ Run Set 6, each paired with an

image showing the location of pixels whose intensity exceeds a threshold value - a multiple of the absorption of the

upstream xenon. The window extends from 1.3 mm to 2.5 mm in the axial direction and 0.1 mm from the centerline

radially. The area of PATs is calculated by using the known pixel size in microns. The axial centroid is then calculated

by: nx*x/N where nx is the number of PAT at a location x and N is the total PAT in the window. The process of finding

PATs is repeated over a window spanning the entire tube diameter to calculate the radial variance of the PATs.

We use a separate program to fit a plot of the optical depth with a piecewise constant function and return the

breakpoints of the best L1 (or L2) fit. The breakpoints give information about the shock location as well and thickness

of the shocked layer can be extracted using this information. These fits are done using the same axial window as the

area and centroid metrics. Robustness of the piecewise fit is established by varying the number of segments in the fit.
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Figure 127: Output from the first 64 runs in RS6. The colored images show the simulated radiographs. The white

images to their right show the location of the pixcels whose intensity exceeds a threshold value.

6.2.2 Improved Wall Shock Metrics

The main metrics used for assessment of the computational model and prediction in the CRASH radiative shock

experiments have continued to be focused on the location of the main shock and properties of the radiation-driven wall

shock upstream of the main shock. Methods for identifying the location of the shock in a robust, automated fashion

were relatively straightforward to develop. Because the wall shock is sensitive to different aspects of the physical

system than the main shock, such as the optical properties of the upstream materials and emission properties of the

shocked xenon, quantification of the effects of its properties provides an important additional constraint on model

physics and parametric uncertainty. Persistent effort has gone into designing and testing approaches to quantifying

physically relevant, robustly identifiable aspects of the wall shock. We will review the early stages of these metrics,

the issues that arose, and discuss the current wall shock metrics and methodology for extracting them. The speed of the

wall shock as an indication of shock strength is a sensible measurable reflective of the important physical processes.

Assuming the radiation flux from the main shock is adequately steady, the distance that the wall shock has separated

from the wall when interacting with the main shock is a surrogate for the speed. Early results indicated that developing

an automated algorithm for identifying the location that the wall shock met the main shock was not feasible. This led

to the decision to define the first wall shock metric to be the separation of the wall shock from the wall at a distance of

100 m upstream of the main shock. Because this metric was a measurement in relation to the main shock location and

the simulations showed large variations in morphology of the main shock inconsistent with the experimental systems,

this metric varied wildly on ostensibly similar wall shocks and was determined to be a poor measure of the underlying

dynamics. The decision was made to move to a wall shock metric that was independent of the shock location, with

the focus on identifying two quantities, the slope of the wall shock on the image plane and the intersection of the wall

shock with the wall of the target. These names are became somewhat misnomers, as both are defined by identifying
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Figure 128: Experimental (top) and simulated (bottom) radiographs of radiative shock system. In both the top and

bottom image, the locations of the interface between the plastic ablated from the walls and the xenon gas shocked by

this ablated material are denoted in white. In the experimental image, the 200 points are identified manually, while

the interface in the simulated radiograph is found by identifying the minimum absorption in the subset of a column

of pixels. A piecewise linear fit to these points is used to define the wall shock slope and intersect point. The X-

coordinates in the two images have been shifted to align the main shocks in order to best illustrate the wall shock

properties.

the discontinuity in absorption marked by the interface between the ablated plastic from the wall material and the

xenon that has been shocked by this ablation. The wall shock slope and intercept are then defined as parameters of

a piecewise linear fit to the set of points marking this transition at multiple locations axially between the end of the

tube and the location that the plastic-xenon interface meets the main shock. Figure 128 shows an example of the set

of identified points on an experimental and a simulated radiograph, labeled in white. On the simulated image, the

points appear as a nearly continuous line because one point is identified for each column of pixels. The details of the

identification procedure for each type of image will be described below. The piecewise fit allows one breakpoint, such

that one segment is fit to the points that have little to no separation from the tube wall, and one segment to the data that

separate from the wall to intersect with the main shock. The parameters of this fit are chosen to minimize the residual

sum of squares of the fit. The wall shock slope is then defined as the slope of the segment closest to the main shock and

the wall shock intersect is defined as the location of the breakpoint. Because of the volume of images from simulated

data, the identification of the two metrics is automated. The radial location of the interface near the end of the domain

is found by first detecting the location of the wall by a parametric peak-fitting algorithm. (The wall is found by fitting

a Gaussian peak added to an approximation to the background absorption profile to the radial absorption data.) The

point of minimum absorption within 25 pixels (50 m) radially inward of the wall is then classified as the interface

at that axial location. The next step in the algorithm is to step one pixel axially nearer to the shock and identify the

minimum absorption within nine pixels radially of the previous interface location. This assumes that the wall shock in

the simulations demonstrates sufficient smoothness across the image. The algorithm continues to step in the negative
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Figure 129: The values for the wall shock intersect location in RS13 on both the major and minor axis views of the

elliptical tube. The experimental data from both pre-year 5 experiments and the year 5 experiments are shown. While

the simulations seem to provide coverage of the experimental data, there is a gap in the values at late times due to

problems fitting data near the end of the computational domain.

x-direction until the interface meets the shock. These points, with an example in the lower half of Figure 128, are

then used to determine the wall shock slope and intercept. For the experimental data, the interface between the ablated
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Figure 130: The values for the wall shock slope in RS13 on both the major and minor axis views of the elliptical tube.

The experimental data from both pre-year 5 experiments and the year 5 experiments are shown. The simulation output

shows significant noise due to inconsistencies in the fitting procedure. Additionally, late time slopes were biased

toward higher values due to limitations in the computational domain. Work to improve the fitting algorithm led to the

decision to change paths and go back to using the triple point as the wall shock metric.

plastic and shocked xenon is determined manually. The procedure for the simulated radiographs is not feasible due to

the lower contrast and Poisson noise. Instead, a set of 200 points for each image was used to define the interface. The

number of points chosen to minimize the impact of measurement error of any particular point and to ensure a stable fit

of the piecewise linear model to determine the wall shock metrics. One example of the set of points used for the fit is
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shown on the top of Figures128. In cases where the wall shock intercept extends beyond the viewable area of the film,

the slope of a simple linear fit to the interface data is used for the wall shock slope and the interface value is omitted.

This algorithm worked adequately for the wide range of simulation results, but ran into a few issues related to the

details of the fitting procedure. Especially at late times, the wall shock metrics became strongly sensitive to the length

of the computational domain. As the number of points available for the flat portion of the piecewise fit were available

on the domain became small, their weight on the piecewise fit became less, leading the wall shock intersection point

to drift toward the main shock, biasing the output metric toward smaller values. Figure 129 shows the effect of this

fitting problem as a gap in the wall shock intersect values at late times, with the values above the gap being from a

subset of runs redone with a larger domain. Computational resource limitations prevented us from redoing all of the

runs. As the intersection point moved toward the main shock, it shortened the axial component of the sloped portion

of the piecewise fit, leading to steeper values for the slope. Additionally, the slope values showed a great deal of

noise, especially at late times. The values for wall shock slope versus time can be seen in Figure 130. Despite these

issues, the fitting mechanism worked well overall and efforts to improve the fit were promising; however, in testing

improvements to those methods, it became clear that the algorithm being used to identify the points along the wall

shock was capable of finding the triple point, the location where the wall shock meets the main shock. As this had

been the original feature of interest related to the wall shocks, the decision was made to refocus on extracting it instead

of extracting the slope and intercept values of the wall shock. Triple point locations extracted from the experimental

data where possible are shown in Table 14
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Figure 131: The values for the triple point locations in RS12 and RS13. The axial (x) location is shown on the right

while the vertical displacement from the tube axis (y) is shown on the left. The experimental data from both pre-year

5 experiments and the year 5 experiments are shown with green crosses. The wall location for the baseline tube and

narrow-view tube in year 5 is 287 µm while that for views of the wide tube is 575 µm. The simulations show good

coverage in the horizontal values, though are biased to somewhat smaller vertical locations, indicating stronger wall

shocks in the simulations.

The routine used to trace the points of the interface between the ablated plastic wall and the xenon in the wall

shock in order to find the wall shock slope and intercept, as defined previously, needed only slight changes to be able
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Shot Wall pos- Horizontal Vertical Horizontal Vertical
number ition (µm) position (µm) position (µm) position (µm) position (µm)

53665 ± 287 2192 195 2209 -203

56667 ± 287 2092 203 2096 -201

53668 ± 287 2308 -164

53671 ± 287 1882 212

59027 ± 287 2654 205 2732 -213

59029 ± 287 3429 195 3454 -214

59029 ± 287 3487 216 3509 -223

63768 ± 287 3471 -208

63768 ± 287 3559 189

63769 ± 575 3190 473

63769 ± 575 3226 -514

63773 ± 575 3179 441 3185 -503

67701 ± 287 3802 227 3786 -239

67702 ± 287 3785 227 3675 -239

67702 ± 575 3593 480 3638 -461

67703 ± 287 3273 216

67703 ± 575 2998 438 3011 -491

67704 ± 287 3532 223 3564 -246

67704 ± 575 3526 461 3600 -489

67706 ± 287 3512 227 3628 -264

67706 ± 575 3441 490 3426 -453

67706 ± 287 3553 246 3442 -236

67707 ± 575 3376 461 3376 -488

67710 ± 287 3622 221 3594 -248

67710 ± 575 3347 451 3429 -499

67711 ± 287 3655 243 3532 -250

67711 ± 575 3312 441 3345 -485

Table 14: Shot number and triple point location from multiple experiments. In some cases 2 triple point locations were

measured from the top wall and the bottom wall. The uncertainty for the horizontal triple point location is ± 100 µm

and ± 20 µm for vertical triple point location.
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to trace back to the point where the wall shock intersected with the main shock. The procedure outlined earlier for

finding the wall near the end of the tube was used, but at each step backward axially along the tube, the point of

maximum absorption was found. While this did not perfectly trace along the wall shock front far from the main shock,

the absorption profile of the wall shocked xenon near the main shock allowed the triple point to be identified with

greater reliably. Figure 131 shows the horizontal and vertical locations of the triple point for run sets 12 and 13. The

vertical location is the distance from the center of the target, for the same tube diameter, larger values correspond to

wall shocks that have less separation from the wall. Because run set 13 varied the tube diameter, triple point vertical

(Y) locations have a larger spread. The simulations show a bias toward smaller values for the vertical wall shock

location, indicating stronger wall shocks than in the experimental system. This was consistent with expectation due

to the near-grey radiation transport model. The simulations did show a wider spread in value than the simulations for

similar tube diameter.

6.3 1D HYADES sensitivity study

Because CRASH was being initialized based on output from runs using two-dimensional HYADES (H2D), in order to

have a calibrated initial condition modeling the laser irradiation phase of the experiment, it was important to assess the

uncertainties associated with H2D to gain a full understanding of the uncertainties in CRASH. Lagrangian simulations

in 2D can be very time and effort intensive due to mesh-tangling issues, which is one of several reasons why the

first uncertainty study was done using 1D HYADES. The results of this study provided evidence of the importance of

different parameters within the 1D code and were used to direct the future 2D study. A 15-D parameter space-filling

Latin hypercube distribution was designed by Derek Bingham at Simon Fraser University to define a 512-run dataset

for HYADES (RS1). The 15 parameters are as follows:

• Drive Laser Energy

• Drive Disk Thickness

• Gas Density

• Drive Pulse Duration

• Tube Length

• Laser Rise Time

• Slope of Laser Pulse

• Mesh Resolution

• Photon Group Resolution

• Electron Flux Limiter

• Time Step Multiplier

• Beryllium Opacity scale factor

• Beryllium Gamma

• Xenon Gamma

• Xenon Opacity scale factor

The parameter list encompasses both experimental parameters, such as the laser energy and the gas density, as

well as physical or numerical code parameters, such as the xenon gamma or the mesh resolution. The experimental
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Figure 132: An influence plot based on the study with 1D HYADES

parameters were varied over a range defined by estimates of the variances from the experiments carried out at the

Omega laser facility. The ranges of the code parameters were determined by careful analysis of sensible ranges for

each variable. The results from the 1D uncertainty study were then used to further refine what we consider to be a

sensible range of parameters for the H2D simulations. Before undertaking the full study, test runs were done to confirm

the exclusion of some other parameters on the grounds that we did not believe they could have significant effects.

We evaluated global sensitivity by functional fitting with flexible regression methods (e.g. MARS and MART) fol-

lowed by random permutations of each input and computation of average RMS change over such permutations. Using

this technique we can determine which inputs have the most significant effect on the response surface. These results

are plotted in influence plots to show those inputs that have the largest global influence on the outputs. Figure 132

shows an influence plot based on using 1D HYADES.

This identifies the Be disk thickness, gamma, and laser energy as important physical variables to the output, over

the ranges investigated. Also notable is the number of zones (NBe) used in the code; this set of data is based on a 512

point input design over a 15 dimensional input space. In using this set of data to construct the initial state for CRASH,

we marginalize over only those values of NBe that have no influence on the outputs (that is, we use sufficiently large

NBe that this mesh parameter has no influence on the results). The heat conduction flux limiter also stands tall as having

a large influence. This then tells us that we should more closely investigate this parameter; subsequent review of the

literature indicates that we should have used a more restricted range of values for the heat conduction flux limiter. In

this way the sensitivity study makes apparent parameters that require more attention, and the UQ process drives the

physics modeling and code development.

Another sensitivity metric comes from the length parameters from Gaussian Process (GP) fits of response surfaces.

The covariance models in the GP model have the form

∏
k

exp
[
−
(xik− x jk)

2

2`2
k

]
, (238)
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Figure 133: Normalized significance of the 15 input parameters used in the HYADES run set.

where `k is the length parameter along coordinate k. A large length scale implies that distant points are highly

correlated. The relative relevance for input k is defined as rk = 1/`k; a small value for rk means that large changes in

variable xk have little relevance to the output, while large values of rk imply that a small change in xk has a significant

relevance to the output. While the influence plots describe large-scale influences of inputs on outputs, they operate

over the whole input range and are not sensitive to more local structure. The relative relevance describes the scale over

which a variable operates, and so provides information about variations that are more localized than the entire input

range investigated.

Figure 133 shows the relative relevance of the 15 input parameters for shock location at 1.3 ns (at the time when

CRASH was initialized). The input variables have been standardized over their ranges, so the relative relevance is

normalized to the width of the input space along each dimension. In the system response at this early time more input

variables are in play, besides those that have influence at 13 ns. In particular, besides the influential 5 variables seen

before, pulse duration and number of groups (Ngrp), all produce relatively rapid variation in output compared to the

other 8 variables. These then become candidates for closer study. A study of the variation in NBe marginalized over

all other variables reveals a curve asymptoting to a shock location independent of NBe (number of Be zones), as would

be expected.

6.4 Development of a Physics Informed Emulator

The task of quantifying the uncertainty in the output from computer codes due to input uncertainties is important

element of making informed predictions based on simulation. This task is especially challenging when there are a

large number of uncertain input parameters or number of output quanitities of interest. Both of these characteristics

are present when functional data from one computer code are used to initialize another computer code: the number

of uncertain inputs to the second computer code is the large number of outputs from the first computer code. During
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the first three years of this project we used results from the Hyades code to initialize our runs with CRASH. Here and

in McClarren et al. [2011] we detail a particular approach to this aspect of uncertainty quantification that we believe

could have wide applicability.

At CRASH we endeavor to simulate and predict the behavior of laser-driven shock waves traveling at high Mach

number down a gas-filled tube. The temperatures reached in the experiment are high enough that energy carried by x-

ray radiation affects the dynamics of the shock evolution. To simulate these shocks an Eulerian radiation hydrodynam-

ics code, the CRASH code, has been developed based on a 3D, adaptive, massively parallel magnetohydrodynamics

code [van der Holst et al., 2011]. Using the CRASH code we will predict experimentally observable quantities such

as shock location as a function of time. To initialize the CRASH code we use a Lagrangian radiation-hydrodynamics

code, Hyades [Larsen and Lane, 1994], to compute the laser energy deposition and early time shock formation. There-

fore, we take the field data for the hydrodynamics and radiation variables from Hyades (hundreds of outputs) to

initialize the CRASH simulation. As a result, to compute the sensitivity/uncertainty of the CRASH predictions for the

result of an experiment, we need to known the sensitivity of the Hyades outputs to its uncertain inputs. If we had to

compute sensitivities at each of the hundreds of Hyades outputs this task would be nearly hopeless.

Nevertheless, we have been able to reduce the number of outputs from a Hyades runs significantly using physical

insight. The CRASH simulation is not sensitive to every detail of the Hyades output, and we have leveraged this fact

to characterize the Hyades output using only 40 parameters. We can compute the sensitivity of these 40 parameters to

quantify how much the uncertainties in the input to Hyades affect its output. As a result we have identified the areas

of input space where we need to focus effort in reducing uncertainties.

6.4.1 Description of the Simulation

Using computer simulation we seek to predict the several features of the shock such as its position down the tube as

a function of time and its speed. The paradigm we have adopted uses a Lagrangian radiation hydrodynamics code,

Hyades, to compute the laser energy deposition and system evolution for the first 1.3 ns (the laser pulse width is 1

nanosecond at full width half maximum). The result of the Hyades computation is an initial condition for the CRASH

code, an adapative mesh refinement (AMR) Eulerian radiation hydrodynamics code that computes the shock behavior

in the xenon. This handoff from Hyades to CRASH is necessitated by the fact that, when modeling the system in

multiple dimensions, the time a Lagrangian code can model is limited by tangling of the mesh. This mesh-tangling

problem is severe enough that Hyades cannot be used to model the system of interest at later times. However, because

CRASH cannot model the laser absorption, modeling at early times with Hyades is necessary.

As a result of this arrangement, we need to understand the sensitivity of the Hyades results as function of 1) exper-

imental conditions such as laser irradiance, beryllium disk thickness, xenon gas pressure, etc. 2) numerical parameters

such as the number of mesh points or the number of energy groups. Moreover, because we are interested in using

the output from Hyades to initialize the main simulation code, we are presented with a large number of parameters

(hundreds of mesh points times the number of hydrodynamic variables) for which we desire sensitivity information.

In the next section we discuss our approach for reducing the number of parameters needed to characterized the Hyades

output. Later we will describe the process of generating a regression model for the Hyades output.
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6.4.2 Physics-Informed Partitioning of Hyades Output

One might hope to develop an analytic model of the structure of the Hyades output at a given time. For our application

this time would be the time at which the Hyades output is used to initialize the CRASH code. This would offer the

merit of having physically based parameters that could be adjusted to fit the Hyades results. Unfortunately, this turns

out to be quite complex because the effects of the laser-heated electrons continue for several hundred picoseconds after

the end of the laser irradiation. Alternatively, one might hope to do fitting of the Hyades output to identify a simple,

parameterized, description of the structure. Our initial attempts to do this by purely statistical methods did not go well,

in part because the statistical model has no physical judgement. Here we present and discuss a physically motivated

partitioning of the Hyades 1D output. This makes the development of an emulator much more efficient because we

need to predict the simulation output of many fewer degrees of freedom.

Figure 134 shows the velocity, density, and pressure profiles from a 1D Hyades run, at a time of 1.25 ns (the

initialization is standardized at 1.3 ns). This run is tuned to match the observed location of the shock in the Xe gas

at 13 ns. The smooth, dot-dash curves show the Hyades profiles while the solid lines show a linearly interpolated

fit. First we discuss the origin of the observed structures. The laser irradiates the Be disk, first driving a shock wave

through it. The shock wave breaks out of the rear of the Be disk in about 500 picoseconds, after which two things

happen. First, the rarefaction ahead of the rear surface drives a shock into the Xe gas at just over 100 km/s. Second, a

pressure gradient develops from the released rear material toward the denser material heated by electron heat transport

from the laser absorption region. This pressure gradient accelerates the bulk of the Be, a process that can be simply

modeled as rocket acceleration. By the decline of the laser irradiance from 1 to 1.1 ns, the bulk of the Be has reached

the same velocity as the initial shock, about 120 km/s (this equals 120 µm/ns and 1.2 ×107 cm/s).

Nevertheless, the end of the laser irradiation is not the end of the Be acceleration, because the pressure gradient

that accelerates the Be remains present until the electrons cool by expansion and heat conduction. This cooling will

in actual fact be much stronger in 2D, so that the 2D temporal structure will not reproduce in detail the 1D structure.

Primarily as a result of this, we expect that less tuning will be required in 2D. As the electrons cool, the pressure profile

develops the peaked structure seen in Figure 134. The Be to the right of the peak continues to be accelerated, the Be

to the left of the peak is decelerated. Correspondingly the region to the left of the peak has very little impact on the

subsequent dynamics. One would expect that there is no need to model this precisely, or even to include the material

far enough from the peak, in order to accurately initiate the CRASH calculation. The pressure drops with time, so that

by 2 ns the pressure profile has Flattened out and no longer accelerates the Be. Much later on, the structure evolves

toward that of a blast wave in which the pressure accelerates material gradually away from the shock.

In the figure, one can see a region of reduced pressure gradient to the right of the peak. This is a remnant of the

initial launching of the shock in the Xe at shock breakout. If one follows the line upward from the left boundary of

this Flat region, one can see that this corresponds to the location of maximum velocity. What has happened is that

the further acceleration of the Be after 1 ns has launched a velocity impulse forward through the leading edge of the

Be. The maximum velocity is about 180 km/s at 1.25 ns, and in this calculation reaches 220 km/s by 1.5 ns when the

velocity impulse has overtaken the shock in the Xe. This corresponds to the maximum post-shock ion temperature

found by Hyades, which is about 2 keV. At 1.25 ns, the shock is established in the Xe but is evident in the figure

primarily in the density. At this time, the immediate postshock ion temperature is about 700 eV. The structure in

the Xe is not well resolved at this time, with both the pressure and the velocity showing gradual transitions. This is
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SHOCK LOCATION DETECTION

H2D will be used for passing initial conditions into the CRASH code for modeling the radiative 
shock experiments. H2D is a Lagrangian Radiation Hydrodynamics code with a ray-tracing laser 
package built-in. It is written by Jon Larsen at Cascade Sciences Inc. H2D is used to model the 
dynamics while the laser is on. After the pulse ends, the output is passed on to the CRASH code as 
its initial conditions. Because H2D is a Lagrangian code, the time it can model is limited by 
tangling of the mesh, causes the code to crash. The transition point between the codes is chosen 
to be 1.3 ns in order to correctly model the nominal 1 ns FWHM laser pulse and any reasonable 
variation of the laser pulse duration. Also, data at 13 nanoseconds is collected to assess which 
parameters have the largest impact at times near current experimental x-ray radiography data.

The dataset can also be used as a more simple test problem for the uncertainty quantification 
processess for CRASH. Assessing predictive capability is a critical part of the CRASH program and 
test problems are of utmost importance to developing an effective process. Also, 1D simulations 
are used to assess which experimental variabilities lead to the largest deviations from the nominal 
case, in order to direct future uncertainty analysis of H2D.  By finding the parameters which have 
the greatest correlations,  the 1D runs can drastically cut down on the total number of necessary 
2D simulations.  

BACKGROUND

MOTIVATION FOR ANALYSIS

RANGES FOR HYADES INPUT PARAMETERS

EXTRACTING 1D PARAMETERS

The data collected has been processed to be used to make fits of the HYADES output and a 
HYADES emulator for CRASH initial conditions. The results are also being used to assess 
importance of various input parameters to the output at 1.3 ns. We have also had discussions 
about possible input parameters that are able to be analyzed using the 2D but not the 1D code 
and the best ways to sample this parameter space incorporating what we have learned.

FUTURE DIRECTION

In order to assess the results of varying the initial parameters a collection of physical parameters 
have been chosen to adequately reflect the conditions of the system. These variables will also 
allow for a fit to the data to be constructed which will then be used to develop an emulator for 
HYADES. In order to reflect the range of conditions at 1.3 ns, the position, density, pressure, and 
velocity is extracted where:

7 cm/s 
1/2 its maximum value 

The shock position at 13 ns is also extracted to allow for comparison to the observed data from 
the Omega experiments and look at the sensitivity of this to the initial parameters.

Building a Dataset of Results Modeling Radiative Shocks in 1D HYADES for Uncertainty Quantification
MJ Grosskopf, RP Drake, B Fryxell, FW Doss, CC Chou University of Michigan 

D Bingham Simon Fraser University

Parameter Nominal Range Min Max

Beryllium Thickness .020 mm 10% 0.018 0.022

Laser Energy 3.8 kJ 15% 3.23 4.37

Pulse Duration FWHM 1 ns 10% 0.9 1.1

Xe Density .0065 g/cc 10% 0.00585 0.00715

Tube Length 5 mm -20% 4 5

Laser Rise Time 100 ps 50% 50 150

Slope of Laser Pulse 30% 0.85 1.15

Mesh Resolution 65 zones 20 200

Number of Photon Groups 20 100

Electron Flux Limiter 0.05 0.03 0.1

Time Step Control Multiplier 1 0.25 1

Beryllium Opacity Multiplier 1 0.7 1.3

Beryllium Gamma 1.4 1.667

Xenon Gamma 1.2 1.4

Xenon Opacity 1 0.7 1.3

Most of the physical parameters are straight forward in the extraction. The shock location is 
found for each time dump by looking at the maximum ion energy location in the xenon. This 
matched finding the shock location using the maximum in the gradient of pressure, while 
avoiding some erroneous values found using the pressure. A curve is then fitted to the shock 
location vs. time data and the shock location at 1.3 ns and 13 ns are found from the fit. This is 
done to eliminate the discretization of shock positions by using zone position value in a code 
with a finite resolution. 

0.000 0.005 0.010 0.015 0.020
0

5.0 106

1.0 107

1.5 107

2.0 107

Position

c
m

/s

Velocity

0.000 0.005 0.010 0.015 0.020
0.0

0.2

0.4

0.6

0.8

1.0

Position

g
/c
c

Density

0.000 0.005 0.010 0.015 0.020
0

5.0 1012

1.0 1013

1.5 1013

2.0 1013

Position

d
y
n
e
s

/c
m
^2

Pressure

0.000 0.005 0.010 0.015 0.020
0

2.0 106

4.0 106

6.0 106

8.0 106

1.0 107

1.2 107

Position

g
/c
m
^
2

/s

Momentum Density

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4
- 2.0 108

- 1.5 108

- 1.0 108

- 5.0 107

0

Position

c
m

/ s
Velocity

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4
10- 4

0.001

0.01

0.1

1

Position

g
/c
c

Density

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4

109

1010

1011

1012

1013

Position

d
y
n
e
s

/c
m
^
2

Pressure

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4

1

100

104

106

Position

g
/c
m
^
2

/s

Abs[Momentum Density]

Details Full profiles

1-D HYADES Variable Pro!les and Piecewise 
Linear Fit at 1.3 ns 

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

(a) Hyades Results

Supported by the DOE NNSA under the Predictive Science Academic Alliances Program by grant DE-FC52-08NA28616

SHOCK LOCATION DETECTION

H2D will be used for passing initial conditions into the CRASH code for modeling the radiative 
shock experiments. H2D is a Lagrangian Radiation Hydrodynamics code with a ray-tracing laser 
package built-in. It is written by Jon Larsen at Cascade Sciences Inc. H2D is used to model the 
dynamics while the laser is on. After the pulse ends, the output is passed on to the CRASH code as 
its initial conditions. Because H2D is a Lagrangian code, the time it can model is limited by 
tangling of the mesh, causes the code to crash. The transition point between the codes is chosen 
to be 1.3 ns in order to correctly model the nominal 1 ns FWHM laser pulse and any reasonable 
variation of the laser pulse duration. Also, data at 13 nanoseconds is collected to assess which 
parameters have the largest impact at times near current experimental x-ray radiography data.

The dataset can also be used as a more simple test problem for the uncertainty quantification 
processess for CRASH. Assessing predictive capability is a critical part of the CRASH program and 
test problems are of utmost importance to developing an effective process. Also, 1D simulations 
are used to assess which experimental variabilities lead to the largest deviations from the nominal 
case, in order to direct future uncertainty analysis of H2D.  By finding the parameters which have 
the greatest correlations,  the 1D runs can drastically cut down on the total number of necessary 
2D simulations.  

BACKGROUND

MOTIVATION FOR ANALYSIS

RANGES FOR HYADES INPUT PARAMETERS

EXTRACTING 1D PARAMETERS

The data collected has been processed to be used to make fits of the HYADES output and a 
HYADES emulator for CRASH initial conditions. The results are also being used to assess 
importance of various input parameters to the output at 1.3 ns. We have also had discussions 
about possible input parameters that are able to be analyzed using the 2D but not the 1D code 
and the best ways to sample this parameter space incorporating what we have learned.

FUTURE DIRECTION

In order to assess the results of varying the initial parameters a collection of physical parameters 
have been chosen to adequately reflect the conditions of the system. These variables will also 
allow for a fit to the data to be constructed which will then be used to develop an emulator for 
HYADES. In order to reflect the range of conditions at 1.3 ns, the position, density, pressure, and 
velocity is extracted where:

7 cm/s 
1/2 its maximum value 

The shock position at 13 ns is also extracted to allow for comparison to the observed data from 
the Omega experiments and look at the sensitivity of this to the initial parameters.

Building a Dataset of Results Modeling Radiative Shocks in 1D HYADES for Uncertainty Quantification
MJ Grosskopf, RP Drake, B Fryxell, FW Doss, CC Chou University of Michigan 

D Bingham Simon Fraser University

Parameter Nominal Range Min Max

Beryllium Thickness .020 mm 10% 0.018 0.022

Laser Energy 3.8 kJ 15% 3.23 4.37

Pulse Duration FWHM 1 ns 10% 0.9 1.1

Xe Density .0065 g/cc 10% 0.00585 0.00715

Tube Length 5 mm -20% 4 5

Laser Rise Time 100 ps 50% 50 150

Slope of Laser Pulse 30% 0.85 1.15

Mesh Resolution 65 zones 20 200

Number of Photon Groups 20 100

Electron Flux Limiter 0.05 0.03 0.1

Time Step Control Multiplier 1 0.25 1

Beryllium Opacity Multiplier 1 0.7 1.3

Beryllium Gamma 1.4 1.667

Xenon Gamma 1.2 1.4

Xenon Opacity 1 0.7 1.3

Most of the physical parameters are straight forward in the extraction. The shock location is 
found for each time dump by looking at the maximum ion energy location in the xenon. This 
matched finding the shock location using the maximum in the gradient of pressure, while 
avoiding some erroneous values found using the pressure. A curve is then fitted to the shock 
location vs. time data and the shock location at 1.3 ns and 13 ns are found from the fit. This is 
done to eliminate the discretization of shock positions by using zone position value in a code 
with a finite resolution. 

0.000 0.005 0.010 0.015 0.020
0

5.0 106

1.0 107

1.5 107

2.0 107

Position

c
m

/s

Velocity

0.000 0.005 0.010 0.015 0.020
0.0

0.2

0.4

0.6

0.8

1.0

Position

g
/c
c

Density

0.000 0.005 0.010 0.015 0.020
0

5.0 1012

1.0 1013

1.5 1013

2.0 1013

Position

d
y
n
e
s

/c
m
^2

Pressure

0.000 0.005 0.010 0.015 0.020
0

2.0 106

4.0 106

6.0 106

8.0 106

1.0 107

1.2 107

Position

g
/c
m
^
2

/s

Momentum Density

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4
- 2.0 108

- 1.5 108

- 1.0 108

- 5.0 107

0

Position

c
m

/ s

Velocity

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4
10- 4

0.001

0.01

0.1

1

Position

g
/c
c

Density

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4

109

1010

1011

1012

1013

Position

d
y
n
e
s

/c
m
^
2

Pressure

- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4

1

100

104

106

Position

g
/c
m
^
2

/s

Abs[Momentum Density]

Details Full profiles

1-D HYADES Variable Pro!les and Piecewise 
Linear Fit at 1.3 ns 

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

(b) Detail

Figure 134: Hyades output at 1.25 ns compared with piecewise linear fit from the physics informed emulator.
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unavoidable in the context of doing a viable 1D Lagrangian model.

The density maximum is located in between the maxima of pressure and velocity, and is the natural result of the

ablation of Be to the left and the expansion of the rear Be surface to the right. Once the velocity maximum has over-

taken the shock, the velocity profile becomes and stays quite linear. This is typical of freely evolving hydrodynamic

systems, and corresponds to steady expansion with time. As the system expands, the density decreases and the density

maximum eventually disappears.

Beyond these physical considerations, in the process of making this fit work we were led to include some additional

parameters further to the left, with an exponential fit to the density and pressure there. In the long run, after we had

sorted out all the details, this turned out not to be essential.

With the above context, the following assumptions seem reasonable for construction of a fit to the Hyades output.

1) Material having significant negative velocity can be approximated by very simple and inaccurate profiles, because

it just continues to slowly accelerate to the left and cannot impact the dynamics of interest. The fit shown in the figure

and described here, though, ignores the laser-heated corona at low density and approximately captures the exponential

density profile from the material that was heated by electron heat transport. 2) The initial state of the precursor does

not need to be modeled in detail, because the energy through the shock by 1.5 ns is less than 10% of the energy by

13 ns. We demonstrated this in test runs with CRASH that removed the initial precursor heating. 3) The following

parameters will suffice to define the profiles.

First, the minimum position of the Hyades output is needed. The fit shown uses half this value as its limit, because

as one can see the density and pressure profiles fall off much more steeply (due to ignoring the laser heated corona).

Call this value rmin . Second, one needs the position, velocity, density, and pressure at the locations where (from left

to right):

• the velocity first exceeds −3×107;

• the velocity is 1/2 the maximum value;

• the derivative of the pressure abruptly decreases;

• the derivative of the pressure abruptly decreases again (becoming negative or more negative);

• the density is maximum;

• the velocity is maximum;

• the interface is, from the Be side;

• the interface is, from the Xe side;

• the shock is located;

• the precursor properities are steady.

The data just described need to be ordered so that the position monotonically increases. The fit then is piecewise

linear in all regions, beginning at rmin, except for the density and pressure, which are fit as linear exponentials between

the first two locations from this list and left from there to rmin . There is no need to fit the details of the shock
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Table 15: Parameters from 1D Hyades (cgs units)

Position Velocity Density Pressure Material

u >−3×107 -0.008363001 -2.04E+07 0.016829163 3.62E+12 Be

p left corner 0.004615684 3.50E+06 0.168068666 1.05E+13 Be

ρ half max 0.010460472 1.29E+07 0.342857445 1.01E+13 Be

p rt corner 0.010801793 1.45E+07 0.510666015 9.92E+12 Be

ρ max 0.011342457 1.65E+07 0.738250317 7.88E+12 Be

u max 0.012412547 1.90E+07 0.182946 4.57E+12 Be

Be at interface 0.013004106 1.76E+07 0.138409625 4.61E+12 Be

Xe at interface 0.01302491 1.76E+07 0.740472601 4.43E+12 Xe

shock 0.013222783 1.50E+07 0.049271551 1.35E+12 Xe

Precursor 0.063511755 2.07E+05 0.006476877 3.55E+10 Xe

structure, both because they are unimportant for the long-term dynamics and because they are incorrect as represented

by Hyades. The piecewise linear fit shown in Fig. 1 used the list of values shown in Table 2. One could calibrate the

fit to preserve some defined quantity of mass, momentum, or energy, but at the present level of detail this would be

overkill.

It is hard to see how fewer locations might adequately represent the physical system, except that one might drop the

one with the most negative velocity. The upshot here is that the profiles are minimally represented by four parameters

(plus material identification) at 10 locations. The total of 40 parameters include some that might be inferred from

correlations, but not many.

To verify that these 40 parameters are adequate to describe the Hyades data used to initialize CRASH, we per-

formed simulations of the shock evolution using CRASH with the nominal configuration (see Section 6.4.4) using the

full Hyades output and the 40 parameters of the physics motivated partitioning of the data. We colloquially refer to this

partitioning, especially when in the context of an emulator, as the physics informed emulator (PIE). In Figure 135 we

show the results of these simulations. Here we see that the different initializations does affect the simulation output.

Nevertheless, the change in shock position is less than our experimental uncertainty. Other features in the solution

have changed slightly: the behind the shock the velocity, pressure, and density have a slightly different shape between

0.001 and 0.002 cm.

6.4.3 Models

We consider a regression model for the responses of the outputs Yi, i = 1, . . . ,n, from n runs of simulations or experi-

ments on the predictors or the inputs Xi = (Xi1, . . . ,Xim) such that

Yi = f (Xi)+ εi, Xi ∈ D⊂ Rm (239)
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Figure 135: The density at 17.3 ns after initiation of the laser pulse as computed with two different initializations:

using the 1D Hyades output directly (full field) and using the physical fields as estimated using the PIE. At this late

time the difference in shock location is only about 75 µm off the prediction based on the full Hyades output field; this

is comparable to the experimental uncertainties in locating the shock.

where f is an unknown regression function that we wish to estimate, εi is a random error with zero mean, mostly

assumed to be from a Gaussian distribution, and D is the domain of interest, e.g., convex hull defined by the predictors.

In our case, because we are dealing with computer simulation and not performing a measurement, the value of ε

is zero. Also, to predict the 40 PIE parameters for a given run of Hyades, each of the 40 parameters is a Yi that we

will model independent of the other 39 parameters. Modeling these parameters as being related is the topic of ongoing

research, including the use of seemingly unrelated regression models [Holmes et al., 2002]. In priniciple we should

be able make use of the known relations between the parameters. For instance, the parameters are ordered so that the

position is an increasing function, and the other values of density are all less than the density maximum.

The two approaches used to construct a regression model are detailed in the remainder of this section.

6.4.3.1 Multivariate adaptive regression splines (MARS)

Multivariate adaptive regression splines (MARS) as proposed by Friedman [1991] is a nonparametric regression. With

k basis functions Bi and suitable coefficients ai, i = 1, . . . ,k, the MARS estimates f such that

f̂ (x) =
k

∑
i=1

aiBi(x), (240)
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where x ∈ D. The basis function Bi with the degree of the interaction Ji consists of the sign indicators si j =±1, knot

points ti j, and the order ri

Bi(x) =

1, i = 1,

∏
Ji
j=1[si j(xν(i j)− ti j)

ri ]+, i = 2,3, . . . ,
(241)

where (·)+ = max(0, ·) and ν(i, j) gives the index of the predictor variable split on ti j. The optimum basis functions

including knot points can be achieved by the generalized cross-validation criterion. The Bayesian MARS (BMARS)

suggested by Denison et al. [1998] assigns prior to every unknown parameter in the model. The sign indicators si j

and order ri are assumed from uniform on the set {−1,1} and {0,1, . . . ,R} respective, for the maximum order R.

The interaction terms Ji and the components of interaction effects are also uniformly selected. For example, if two-

way interaction Ji = 2 is selected with predictors Xi = (Xi1,Xi2,Xi3), then the interaction effect is equally likely to be

one of {Xi1Xi2,Xi1Xi3,Xi2Xi3}. The number of knots and their locations are assumed to be uniform, respectively, on

positive integers and on the data points. Conjugate priors are assigned to other nuisance parameters. By using a class

of reversible jump Metropolis–Hastings algorithms for Markov chain Monte Carlo (MCMC), the BMARS collects

samples of parameters from their joint posterior distribution. The advantage of BMARS is to identify significant main

effects and interaction effects. In addition, the distribution of knots of each predictor reveals the complexity of the

relationship between each predictor and the response.

6.4.3.2 Gaussian Process Regression

Gaussian process regression generates a Gaussian distribution of functions that attempts to interpolate the output data.

Specifically, the Gaussian process is a collection of random variables where any finite subset of the random variables

has a joint Gaussian distribution. The random variables for Gaussian process regression is the value of f (Xi) at a given

point Xi. In our notation, we write the value of f at all the points Xi as f(X). Like a Gaussian distribution, a Gaussian

process is entirely determined by its mean and covariance. The data are normally standardized to have a mean of zero,

and the covariance is determined by a covariance function that is chosen to have certain properties. In our case we use

the squared exponential covariance function which assures that the function f (Xi) is smooth. This covariance function

has the form

k(Xi,X j) = σ
2
f exp

{
−

m

∑
k=1

(xik− x jk)
2

2l2
k

}
.

The covariance function has m+1 parameters: the maximum allowable covariance (σ2
f ), and the m length parameters.

These parameters are estimated using the empirical Bayes procedure. Using the covariance function we construct a

covariance matrix K of size n×n with elements

Ki j = k(Xi,X j),

and then write the Gaussian process regression distribution as

f(X)∼ G P(0,K).

Then to predict f(X∗) at some number n∗ input points, we use the fact that f (X) and f (X∗) are distributed by a joint

Gaussian. Then the conditional expected value of f(X∗) is

E[f(X∗)|f(X),X∗,X] = K(X∗,X)K(X,X)−1f(X).
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The covariance for f(X∗) is given by

var[f(X∗)|f(X),X∗,X] = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗).

Therefore, in Gaussian process regression we have a value for the mean and covariance at each point we wish to

evaluate the regression model.

6.4.3.3 Comparison of Models

The two approaches, Gaussian process regression and Bayesian MARS take two different approaches to the regression

problem. Gaussian process regression takes a holistic view of the data: it builds a regression model by evaluating a

covariance function at every input point. This contrasts with the MARS approach that uses knot points to segregate

the data into snapshots that can be described using different basis functions. As result of these different perspectives,

Gaussian process regression can take a look at the overall effects of the data on the regression model, whereas MARS

is formulated to look at both the main effects of the input data as well as their interactions. The approach of MARS is

superior when the true function has different regimes. For example if it has a rapidly varying region and an asymptotic

regime as is the case with the function f (x) = (logx)2/
√

x which varies rapidly near x= 0 and slowly as x→∞, MARS

can seperate f (x) into a rapidly varying piece and a slowly varying piece. Gaussian process regression in looking at

the totality of the data cannot discrimmate between these two different regimes of the function. We show results for

this regression problem in Figure 136. The GPR results demonstrate the above point that GPR cannot capture the

change in behavior of the underlying function.

In terms of the number of parameters required to describe the regression model, Gaussian process regression

requires only m+1 parameters. This contrasts with MARS where there are parameters that describe the knot points,

the interactions, the sign indicators, and basis function order. Of course, for the extra parameters one receives a more

flexible regression model as discussed above.

6.4.4 Simulations

To map the relevant input space for our radiating shock simulation we have run 512 simulations using 1D Hyades in

run set RS1. The input space we consider is 15 dimensional; see Table 16 for a list of the different input parameters

and how each was varied. Of these 15 different inputs 7 inputs describe the experimental configuration being simulated

(the first seven entries in Table 16), and 8 are parameters that relate to numerical accuracy (e.g. number of zones in

the Be) and model calibration (e.g. Be gamma). The 512 simulations used a Latin hypercube design to partition the

15 dimensional input space.

In Figure 137 the values for the shock location and the density at the shock measured at 1.3 ns are shown as a

function of six of the input parameters. In these scatter plots a discernible trend in the data as a function of an input

parameter indicates that output quantity of interest is strongly influenced by that parameter. Figure 137 indicates that

the shock location is dependent on the electron flux limiter and the laser energy: as each of these parameter values

increases the shock value appears to increase. The density at the shock does not have such obvious influence by one of

these six parameters. Later, we will return to the question of which input parameters are most important by performing

statistical analyses on the emulator results.
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Figure 136: Comparison of the two regression models under consideration, GPR and BMARS, for f (x) = (logx)2/
√

x.
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Table 16: Hyades Simulation Input Parameters and Ranges

Parameter Nominal Range Min Max

Beryllium Thickness 0.020 mm 10% 0.018 0.022

Laser Energy 3.8 kJ 15% 3.23 4.37

Pulse Duration FWHM 1 ns 10% 0.9 1.1

Xenon Density .0065 g/cc 10% 0.00585 0.00715

Tube Length 5 mm -20% 4 5

Laser Rise Time 100 ps 50% 50 150

Slope of Laser Pulse 30% 0.85 1.15

Mesh Resolution (number of zones in Be) 65 zones 20 200

Number of Photon Groups 20 100

Electron Flux Limiter 0.05 0.03 0.1

Time Step Control Multiplier 1 0.25 1

Beryllium Opacity Multiplier 1 0.7 1.3

Beryllium Gamma 1.4 1.667

Xenon Gamma 1.2 1.4

Xenon Opacity Multiplier 1 0.7 1.3
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Figure 137: Scatter plots for the shock location and density at the shock from the 512 Hyades simulations at 1.3 ns as

a function of the six most important input parameters.
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Figure 138: Comparison of the shock position as predicted by the regression models with the observed Hyades value

from the 363 test data results.

6.4.5 Hyades Outputs Emulation and Discussion

The obvious litmus test for an emulator is how well it can predict the output of the code. To test the ability of GPR

and BMARS to predict the output of Hyades we used 363 Hyades runs as test data. The results for shock position

from BMARS and GPR emulators compared with the actual Hyades shock position on the test data are shown in

Figure 138. Shock position is one of the most important output parameters because it is experimentally measurable

and the location of the shock in the initial conditions for CRASH should have a large effect on the CRASH output. In

Figure 138 perfect emulation would have the data fall on the red line given by y = x. A cursory glance at the figure

shows that BMARS did a better job of predicting the shock prediction than GPR. Although, it should be said that both

regression methods did predict the shock position within 3%. The emulator results for output parameters other than

shock position demonstrated similar performance.

6.4.5.1 Analysis of GPR results

From the emulator we constructed using Gaussian process regression we can use the values of lk found via the empirical

Bayes method to get information on which input parameters affect the outputs the most. Specifically, the value of 1/lk,

called the relative relevance, tells us how important changes in variable k are to the output.

In Figure 139 we show the relative relevance for each input parameter on the shock position. From this figure we

see that numerical and model calibration parameters, the mesh resolution and the electron flux limiter, have the largest

effect on the shock position. The fact that these parameters are important for the shock position is not surprising.

Changing the number of mesh zones in the beryllium can change the shock position because the error in the numerical

results is related to the mesh resolution as well as the fact that adding a Be zone might cause a step change in the shock

position. In general, one would like to know the output when the number of zones is large to make the discretization

error as small as possible. This consideration will be made when initializing CRASH.

Similarly, the electron flux limiter is model parameter that attempts to account for the fact that a diffusion model
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Figure 139: Relative relevance (1/lk) for each input parameter in the GPR emulator for the shock position.
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Figure 140: Significance of effects for shock position. The effects are numbered 1 = laser energy, 2 = laser pulse

duration, 3 = Xe density, 4 = Be disk thickness, 0 = no effect.

cannot properly capture the streaming of hot electrons. By changing this parameter the bulk speed at which heat is

conducted by electrons is changed. In turn changing how heat moves through the problem also changes how the shock

moves. The large importance of the electron flux limiter has spurred us to further investigate the germane literature to

properly constrain the range of this parameter.

Next in importance is the gamma of the beryllium material, a model calibration parameter that relates to the

compressibility of the Be plasma. Experimental parameters, specifically the Be disk thickness and laser energy, are

the fourth and fifth most important parameters. In turn adjusting the disk thickness and laser energy would have

a larger effect effect on the shock position at 1.3 ns than for instance adjusting the laser rise time. The fact that

parameters that describe the experiment are not the leading parameters in terms of relative relevance, points to the fact

that the numerics and model calibration aspects of a Hyades simulation are the dominant mechanism for changing

shock speed.

6.4.5.2 Analysis of BMARS results

Using the BMARS results we have estimated the interactions between experimental parameters in the emulator. We

do this by looking at the MCMC samples from the posterior distribution for the interaction parameters for the emulator

and calculating the probability that a sample has that interaction term. In Figure 140 we plot the probability that a

particular interaction is in a sample of the emulator model for the shock position. The figure uses a 1 for laser energy,

2 for laser pulse duration, 3 for Xe density, and 4 for Be disk thickness; 0 denotes no interaction. For example, 100

denotes the effect of laser energy only, and 124 is the interaction between laser energy, laser pulse duration, and Be

disk thickness. From the figure we can see that each of these four parameters is significant because all samples from

the posterior distribution has these effects, i.e., we could not leave out these parameters and have an emulator of similar

accuracy. Similarly, changing one of these parameters would change the shock position. Also, the two way interaction

between laser energy and pulse duration and the three way interaction between laser energy, pulse duration, and Be
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Figure 141: Histogram for the number of knots in the BMARS emulator from samples of the posterior distribution.

disk thickness are important. These interactions are not completely unexpected. For instance, if the Be disk thickness

is increased, then the laser energy and pulse duration could be changed to compensate for the greater mass of Be to

accelerate.

From the BMARS emulator we can also estimate how many different “regimes” or snapshots of the input/output

pairs are needed to predict the shock position. A histogram for the number of knots in the samples from the posterior

distribution of the emulator for the shock position is shown in Figure 141. From this figure we can see that the emulator

needs at least 7 knots to describe the training data with 7 and 8 being the most common number of knots.

6.5 Predictive study from the 1D simulations

In this section and in [Holloway et al., 2011] we describe our first steps in creating and testing a predictive model

that combines a set of data from 1D CRASH code runs (RS2, with CRASH 1.1) with field data from a campaign at

the Omega facility [Boehly et al., 1995] from October 2008. As part of this activity a model discrepancy function

was created to provide a quantitative picture of the quality of the 1D CRASH model compared to experiments; this

discrepancy informs us regarding the extent to which the simulation matches the experiments, modulo the effect of

random experimental error. If the discrepancy is significant over some region of input space then this is worthy of

investigation to understand why, and assess if reduction in the discrepancy is warranted, and if so to determine what

changes in the CRASH code physics will reduce it.

A second aspect of the predictive model is its use to calibrate some uncertain physical model constants. By starting

with a non-informative prior distribution of these physical parameters (described below) over an initial range deter-

mined by expert judgement, we can learn which of these parameters can be calibrated by the experimental data, and
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test the predictive power of the model through a set of leave-one-out exercises in which we predict one experimental

result while using the others for calibration.

The topic of quantification of margins and uncertainty (QMU) has received considerable attention of late, par-

ticularly by the National Nuclear Security Agency, as reflected for example in the recent National Research Council

study [Ahearne et al., 2008]. A core component of QMU is uncertainty quantification, and the NRC report emphasizes

the need to further develop the methodology for this work, especially in using computational models to predict, with

uncertainty, the threshold or design values for successful operation of an engineered system. The report also empha-

sizes the importance of developing a diversity of approaches to the methods of establishing margins and quantifying

uncertainty. There is also value in applying these diverse approaches to a variety of problems. This section applies

one such methodology to a problem in radiative shock hydrodynamics.

6.5.1 The physical system

In the CRASH experiments of interest here, from October 2008, a laser irradiates a Be disk, driving a shock into a

cylindrical Xe-filled tube. The shock is sufficiently fast that energy balance requires that it radiate energy away, and so

forms a radiative cooling layer immediately behind the shock front. The radiation travels out in front of the shock and

heats the wall of the tube, leading to ablation of the plastic and the generation of a second shock (the “wall shock”) that

travels into the tube radially and interacts with the primary shock [Doss et al., 2009]. The physics is this dominated by

the complex interaction among a laser-driven radiative shock, the ablation-driven wall shock, and the Xe-Be interface

behind the primary shock. This physics is relevant to astrophysics and fundamental high-energy-density physics

research. The experiments are discussed in Sec. 2.1. Their purpose was to explore the variability of the experimental

data [Doss et al., 2010]. These were used as our first set of data to build a calibrated predictive model. The shot

numbers and input data (nominal x values) are shown in Table 1, and the measured shock locations and shocked Xe

layer thicknesses (the outputs y) are shown in Table 2. Because there are two views of the experiment, some of the

shots provide two sets of input that differ by observation time. We will use these as independent measurements.

Figure 142 summarizes the shock location from these field data. View 2 in shot 52661 is at 16 ns, and is not

shown on this plot. For the predictive model construction in this section we will use 9 experimental points (8 as prior

experiments, and the 9th to predict); we eliminate the data marked 52661∗ because it is at a late time (although we

will explore prediction of this observation below). Two additional shots (52670 & 52671) from the same experimental

campaign are not used because the target had alignment issues that produced a shock that was not perpendicular to the

tube.

6.5.2 The simulation tools

The CRASH code used for these simulations (version 1.1) had the following properties: a finite-volume MUSCL

(monotone upstream centered scheme for conservation laws) [van Leer, 1974, 1979] approach to solve the radiation-

hydrodynamics in the gray diffusion approximation, so that the dependent variables are the mass, momentum and total

energy densities of the flow, and the radiation energy density. An exact Riemann solver for a sophisticated EOS based

on an artificial relaxation method is used to upwind the solution scheme in a mixed implicit/explicit update with heat

conduction, radiative transfer and energy exchange between radiation and matter treated implicitly, while the advection

terms are explicit. The implicit scheme uses a preconditioned Newton-Krylov-Schwarz method. Multiple materials
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Figure 142: Initial shock location data from the October shots. Note that some shots provide data at two values of to,

as shown in Table 2. Shot numbers 52670 and 52671 are not used in this section because the targets had alignment

problems.

are treated using level set functions initialized based on the signed distance from material interfaces. The level-set

function is advected with the fluid to keep track of material location, with one level set function per material. Cells are

treated as a single material, assigned to that of the largest level-set function. The material interfaces can be located by

adaptive mesh refinement, so that we do not treat mixed material cells; this is important for radiation transport as the

different materials can have very different opacities. In the 1D simulations used for this section the Be-Xe interface is

well resolved.

The 1D CRASH simulations used for this section are based on gray flux-limited radiation diffusion [Morel, 2000,

Drake, 2006]. The full system is updated at each time by first doing a full update on the hydrodynamic variables,

with radiation/electron momentum and energy change ignored in this fractional step. The code then passes hydrody-

namic variables at cell centers to the radiation solver, which performs an implicit update of the radiation field. The

radiation/electron energy change source terms are passed back to the hydro solver, which completes the hydro step,

incorporating these source terms [Edwards, 1996a]. The main radiation transport effect on shock position is to remove

the correct amount of energy from the shocked Xe; since this shocked Xe is optically quite thick, the gray model can

be expected to do well. The use of gray radiation diffusion is seen to be adequate post hoc for the predictions being

made here; as we later move into 3D simulations including the plastic tube walls the multigroup effects are expected

to be more important in order to compute the correct energy deposition in the wall of the tube.

Because the CRASH code lacks a package to model laser deposition within the Be, it is not able to model the first

nanosecond of the CRASH experiments. This modeling is provided by a preprocessor. The Hyades code [Larsen and

Lane, 1994] can perform this initial calculation, but it cannot in general perform the full calculation to some 13 to 20 ns

after the initiation of the laser pulse because it is a Lagrangian code and in 2D the Lagrangian mesh becomes hopelessly

tangled within a few nanoseconds; even with automated remap it cannot follow the CRASH hydrodynamics. It also

lacks the parallel performance of CRASH, and does not have a 3D capability, so it is not suited to our long term goals.

201



!"##$%&'()'*+,'-./!0'
-$12"1$3(4'

X - Experiment parameters
 - Physical Constants

N - Numerical Parameters

YS - Results to be analyzed with 
data by statistical methods 

CRASH
Radiation-Hydrodynamics

Simulation Code

CXC

NC 

YP
CRASH

Pre-Processor

XH

Calibration
Data (D)

YC Y
CRASH

Post-Processor

XR R

YHP = C PRE (X H , D ) = Calibrated CRASH ICs

YC = C 3D (YHP , X C , θC , N C )

YS = C POST (YC , X R , θR )

Figure 143: The major components of the CRASH code system prior to implementation of the CRASH laser package.

We therefore use Hyades only as a component in building a preprocessor that can initialize CRASH. The handoff

between CRASH and Hyades has been performed at 1.3 ns; we have not examined the sensitivity of our results to

variations to this value of 1.3 ns.

The CRASH code system used in this phase of the project then consists of 3 major blocks. A preprocessor that

uses a description of the initial system geometry and experimental parameters to estimate the state of the system at

about 1.3 ns after the laser pulse is initiated (and shortly after the laser irradiance has returned to zero). This initial

state provides matter and radiation fields (ρ , u, p and Tr) to initialize the CRASH radiation hydrodynamics code. In

the present study, it turned out that Tr was not needed. The radiative energy fluxes are large, but the radiative energy

densities are very small. As a result, the matter recreated the radiation field almost immediately and with negligible

energy loss. The code then advances these fields to some later observation time, and which point the fields are provided

to a postprocessor which does feature extraction of key system outputs ys. A block diagram of the system is shown in

Fig. 143.

In this section CRASH was run in 1-D with gamma-law EOS and gray diffusion and with opacity scale factors. In

addition, in the 1D model there are only two materials, Be and Xe. The use of a 1D simulation to model the CRASH

experiment was expected to be adequate for modeling the primary shock location, which is the only experimental

output considered here. The shock position is governed largely by the Be slug driving the shock through the Xe, and

the position is determined largely by the resulting momentum balance. The 3D aspects of the system come into play

when the details of the wall ablation and associated ablation driven shocks are being predicted. The spatial mesh in

the 1D simulations was refined in a mesh refinement study so that the shock location was converged to less than 10

µm, less than half of the experimental uncertainties.

6.5.2.1 Preprocessor construction

In this 1D model we must initialize density, velocity, pressure and radiation temperature (ρ , u, p and Tr). We will use

a tuned set of Hyades 1D runs to help provide these data; in particular, we must tune the laser energy down in the

simulations because the 1D geometry lacks the radial loses of energy and so will result in larger shock speeds than
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observed in the actual field experiments. The result of this is that the laser energy must be scaled by a factor f in order

to properly launch the shock as observed in experiments. Therefore as we vary the laser energy x2 to explore the input

space, the laser energy input to the code system (and Hyades in particular) is actually f x2.

In previous radiative shock experiments [Reighard et al., 2007], it was found that in order to match with the shock

position, the irradiance needed to be lowered by a factor of f = 0.46. Using the new experimental data and new

Hyades runs this could be refined. In particular, using f = 0.42 and all other inputs (x and θ ) kept at their nominal

values, the shock is predicted to have traveled 1.983 mm in 13 ns. This compares well with the average shock location

of 1.971 mm, and falls well within the error in the data. The need to change the factor is likely mainly due to

variances in the resolution of the Hyades runs between the two radiative shock simulations; for the Hyades meshing

we have conducted mesh convergence study to converge the shock location to within less than a few percent of the

experimental uncertainty. In addition, this calibration exercise assumes that the timing of the measurement at 13 ns is

precisely known. The relative error in the timing from one experiment to the next is quite small, but the absolute error

is near 0.5 ns. One could explore the impact of the uncertainty in this timing by repeating the study described here

using a distribution of measurement times. A better approach, which we are now pursuing, is to obtain independent

calibration data based on the early behavior of the experimental system.

In order to construct a fast running preprocessor a set of 512 Hyades runs was conducted to cover the input space

using a space-filling Latin Hypercube design (LHD). From each of this set of Hyades runs we constructed a simple

profile of piecewise linear and exponential elements that fit the Hyades outputs based on 10 landmark locations in

the system state at 1.3 ns. We then build an emulator that models the response function mapping the inputs (x,θ)

to the parameters of this fit; this response function is constructed using a Gaussian process model. This provides a

physics-based dimension reduction; we therefore call this proprocessor for constructing the CRASH initial state the

PIE (physics informed emulator). The PIE is described more fully in McClarren et al. [2011].

The long term value of such a preprocessor for our work is that we describe the intial state with relatively few

parameters compared to the 1000’s required to define the fields at 1.3 ns. The use of physical insight to determine

the important features in system state as modeled by 1D Hyades allowed us to identify only 40 parameters that could

adequately describe the system state at 1.3 ns. These 40 parameters are based on identifying 10 landmark locations in

the system state at 1.1 ns and using the 3 field values at each of these 10 points (ρ , u, p); the radiation temperature Tr

is set to a small value because there is little energy in the radiation field at 1.3 ns. These relatively few parameters are

functions of the system input parameters, and this relationship could be captured by a Gaussian process model.

The 512 Hyades runs used to construct this emulator covered a 15 dimensional input space, and provided a sample

of 512, 40-dimensional outputs over the 15 dimensional input space. This response was fitted using a Gaussian

process model, so that we could compute the response (40 numbers) at any point of the 15 dimensional input space.

The additional input parameters included Hyades mesh parameters in space and energy, laser pulse shape parameters,

etc. The resulting model was marginalized over input parameters that are not relevant to CRASH. The resulting

response surface is a function of 7 of the input data, x1,x2,x3,θ1,θ2,θ3,θ4, but not x4 because x4 is the observation

time (between 12.5 and 14.5 ns). This input is not relevant to Hyades, so the PIE is constant as a function of x4. The

PIE can therefore map the 8 dimensional input space to 40 numbers, and given these 40 numbers and the interpolation

rules of PIE, we can initialize CRASH 1D at any point in an 8-dimensional input space.

The ability of the PIE to describe the CRASH initial conditions was confirmed by computational studies comparing

results where CRASH was initialized using 1) the full Hyades output and 2) the piecewise linear reconstruction of the
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Description Average/Typical Values Range for Study Symbolic Name

Be drive disk thickness 21 µm 18 – 22 µm x1

Laser total energy 3870 J 3.23 – 4.37 kJ x2

Xe gas pressure 6.5 mg/cc (1.15 atm) 5.85 – 7.15 mg/cc x3

Observation time to 13, 14 and 16 ns 12.5 – 14.5 ns x4

Table 17: Experimentally controlled inputs x.

fluid variables using the 10 feature locations as given by the PIE. A sample result is shown in Fig. 135 in the previous

section, which shows that the shock position at 17.3 ns is modified by about 75 µm by using the PIE in place of the

Hyades full field data to initialize CRASH at 1.1 ns. Note that this error in the shock location is about 20% larger than

the average experimental uncertainty in this particular case.

We used the PIE to initialize this uncertainty quantification run set of the CRASH code (RS3). The run set

was based on a Latin hypercube design and had 320 prescribed CRASH runs, described further below. To do this

initialization we chose the GPR emulator. This decision was based on the fact that we were planning on construct-

ing a GPR-based Kennedy-O’Hagan type model for the final simulation output relative to experiment [Kennedy and

O’Hagen, 2001].

To construct the initial conditions we took advantage of the fact that 8 of the input parameters were numerical or

model calibration parameters. Because we are primarily interested in the nominal result of a Hyades simulation as the

experimental configuration is changed, with the exception of number of Be zones and number of groups, our emulator

evaluates each of the 8 numerical or calibration parameters at the median value of its input range. For the number of

groups and the number of Be zones we evaluate at the 75th percentile of the input range.

The results of generating the CRASH UQ run set using the GPR emulator for Hyades is shown in Figure 144. Here

we show the 40 PIE parameters as a function of input set number. Using the GPR emulator we have information about

the distribution about the mean of the parameters. Later analysis of the CRASH outputs, perhaps by sampling from

the distributions of the PIE parameters, will be able to discern if the uncertainty in the PIE parameters will impact the

CRASH output.

6.5.2.2 System inputs

We will focus here on a specific set of input data to the CRASH code system, and explore the uncertainty in output due

to these inputs. The codes have other inputs, including initial physical fields for hydro and radiation, but in this first

study we will not treat those other inputs as variable from the UQ perspective. We separate inputs into experimental

parameters x that can be controlled and measured to some degree and precision, and uncertain physical parameters θ

that are calibrated by physical knowledge and measurement. Tables 17 and 18 list the inputs. For x1, x2 and x3 the

ranges selected for the study are about twice the experimental uncertainty in the parameter. Note that the observation

times, to, of the Omega data are at 13 ns, 14 ns, or 16 ns. We treat this observation time as an input to CRASH because

our measured data are at different values of to.

The physics parameters are listed in Table 18. While the CRASH 1.1 code—which was used for the work described
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Figure 144: Means and one standard deviation bounds of Hyades outputs to give 320 different initial conditions to

CRASH.
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Description Nominal Value Range for Study Symbolic Name

γBe Be gamma 5/3 1.4 – 5/3 θ1

γXe Xe gamma 1.2 1.1 – 1.4 θ2

Be opacity scale factor 1 0.7 – 1.3 θ3

Xe opacity scale factor 1 0.7 – 1.3 θ4

Table 18: Physical/calibration inputs θ .

here—has self-consistent equation of state and opacity models, in this first exercise we will use γ-law equations of

state for Xe and Be, and will introduce opacity scale factors on the nominal opacity computed from from SESAME

tables [Magee et al., 1995]. Because this is a one-dimensional model of the CRASH experiment, only two materials

appear, Be and Xe. The other materials that appear in the actual experiment, most significantly the plastic wall, do not

appear in these simulations. For Be we expect the γBe . 5/3 because the Be is a fully ionized gas, while for Xe, which

is only partially ionized, the SESAME tables correspond to γXe ≈ 1.2 to 1.3 over the relevant parameter range. We

set the upper limit for the γBe = 5/3 because there cannot be fewer than 3 degrees of freedom for the fully ionized Be

plasma; this effectively represents prior knowledge of the physics of the system. We use these simpler models of the

physics for this first predictive model exercise so that we can directly explore the sensitivity of the results due to the

EOS and opacities, and could explore the computation of posterior calibrating distributions of these simpler models

by using the experimental data.

In total, then, we have an 8 dimensional input space to explore, including 4 parameters x that describe the experi-

mental configuration, and 4 parameters θ that describe some aspects of the physics of the system. These parameters

are individually referred to as xi, i = 1, . . .4 and θi, i = 1, . . .4, as enumerated in Tables 17 and 18.

6.5.3 Predictive model construction

At a fundamental level, we are interested in the following problem: We have a set of inputs, x, which for this section

comprise those listed in Table 17. These are controlled, but only within some uncertainty. We also have an output

quantity, y, of interest, which in this section is the location of the shock at the observation time. We want to predict y

from x.

This problem might be approached by constructing a mapping from x to y, but this straightforward mapping ignores

the existence of nuisance variables, ω . Even if we were able to exactly reproduce inputs x between two experiments,

x1 = x2, we could nevertheless not expect y1 = y2 because the nuisance variables would generally be different. Instead

we might hypothesize that there is a mapping y = f (x,ω) from the inputs (both “controlled” and “nuisance”) to the

output, and there is uncertainty in y both because of the uncertainty in x and the uncertainty in ω .

Furthermore, our ability to construct the function f is limited by our imperfect physical knowledge, and by the

need to make approximations both physical and numerical in realizing a model of practical utility. We therefore

construct a function η(x,θ ,h) that is a function of both the controlled physical inputs x, phenomenological parameters

θ that describe physics, and numerical parameters h. In this section the phenomenological parameters are opacity scale

factors that measure the strength of interactions of photons with matter and the ratio of specific heats γ in a gamma-
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law equation of state for a gas. Generally speaking, the function η is evaluated by solving differential equations in

computer codes, and can be quite expensive to evaluate. However we can generate some set η(xi,θi,h), i = 1, . . .Ns of

simulation values to sample the input space of the problem (and at present we fix h sufficiently small via convergence

studies, such that the outputs y are insensitive to these numerical parameters) and use these sampled values to construct

a model of the output, conditioned also on experimental data as described below. The use of such sampling assumes

that the function is sufficiently smooth, and the sampling sufficiently refined to capture its behavior; in our problem

we have no reason to expect that the output would not be a smooth function of the inputs, and the success (or not) of

the predictions of the predictive model construction will address the extent to which we have sufficiently sampled the

input space. In particular, we will use the model to predict shock location at 16 ns after calibrating at 13 and 14 ns,

and the shock location is expected to be a smooth function of this observation time.

We can improve our model by using experiments, which result in observations y j of the output of interest, mea-

sured with some finite precision and hence having some uncertainty. These experiments are made with the controlled

variables set at some values x j. However, in reality x j is known only imperfectly, and there are still nuisance variables

ω about which we can say little. We can however select a set of experimental inputs x j, j = 1, . . .Ne and measure

the corresponding measurements y j = f (x j,ω) with the understanding that y j is not a single-valued function of x j be-

cause of the nuisance inputs ω that differ from measurement to measurement. Finally, we assume that we have some

prior distribution π(θ) that captures our initial belief about the values of the phenomenological parameters, and, if the

uncertainty in x j is to be accounted for, distributions π j(x) that describe the uncertainty in the experimental inputs for

each experiment j.

Our task is then this: construct a single combined model that is consistent with both the measurements Ye =

{y j} j=1,...Ne and the computer runs Ys = {yi}i=1,...Ns and which also provides a distribution of the physics parameters

π(θ |Ye,Ys) conditioned upon the experimental data. From this model and for a new experiment described by a distri-

bution of input parameters π0(x) we could then construct a distribution of outputs π(y). It is this construction of π(y)

that we call a predictive model.

At present we will simplify this program. In particular, in our work so far we have set aside uncertainty in x. In

addition, treating h as a parameter to calibrate is a misguided strategy—at best we will learn that the mesh should

be fine and the convergence criteria tight. At worst, the model will suggest the opposite, imply that a coarse mesh is

better than fine one and attempting to compensate for some missing physics through a discretization error. We have

therefore preceded this predictive model construction with a mesh convergence study to establish a computational mesh

sufficiently fine to converge the shock location to within less than 10 µm, which is less than half of the experimental

uncertainty.

We have 10 field measurements. However, shot 52661* is left out out because it is a measurement at 16 ns; we

will later predict this value as an extrapolation beyond the range of parameters used in calibration. Of the 9 remaining,

we leave one out of the model construction process, so Ne = 8, and we then predict the 9th. Every one of the 9 will be

left out in turn, so that we can construct the model 9 different times to see if all of the outputs can be predicted. We

also will have 320 simulation runs, so Ns = 320.

We use the modeling framework proposed by Kennedy-O’Hagen [Kennedy and O’Hagen, 2001, Higdon et al.,

2004] to describe our predictive model. In particular, the statistical model for the observations is written as

y = η(x,θ)+δ (x)+ ε (242)
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where η is the simulation code prediction, δ (x) is the discrepancy that describes the degree to which the simulator

does not match the real output y, and ε is random, zero-mean noise that captures experimental variability (and hence,

to some degree, captures the impact of the nuisance variables ω). The observations and simulations are combined

using the joint model

y j = η(x j,θ)+δ (x j)+ ε j j = 1, . . . ,8 (243)

yi = η(xi,θi) i = 1, . . . ,320. (244)

The first equation represents the modeling of 8 of the field measurements (we always leave one out to later predict),

and the second from modeling the output of the 320 CRASH code runs. Notice that the simulations are indexed by

θi. Recall that the true value of θ is unknown, but some value, θi, must be inserted for the simulation code to run. In

addition to building a predictive model with associated measures of uncertainty, we also aim to estimate the calibration

parameter(s) θ .

Following Kennedy-O’Hagen [Kennedy and O’Hagen, 2001, Higdon et al., 2004], each term, η , δ , ε , in the above

model is estimated using a Gaussian process model. Specifically, the output (e.g., shock location y) is specified by a

Gaussian process with constant mean µ and covariance structure

Σ = Ση +

Σδ 0

0 0

+

Σε 0

0 0

 , (245)

where Σ is a 328×328 matrix of covariances.

The covariance of the η values between two points (x,θ) and (x′,θ ′) are modeled in the form

Covη((x,θ),(x′,θ ′)) =
1

λ η
exp

[
−

4

∑
k=1

β
η

k (xk− x′k)
2−

4

∑
q=1

β
η

4+q(θq−θ
′
q)

2

]
(246)

where Ση is the 328× 328 matrix of covariances between all the pairs of points in the set representing both field

measurements and simulation data {[(x j,θ)] j=1...8, [(xi,θi)]i=1...320}. This model represents an assumption that the

computer model output, y, is smoothly varying as (x,θ) varies; we know of no physical effects that would invalidate

this assumption of smooth variation in shock location with the inputs specified in Tables 17 and 18. Similarly,

Covδ (x,x
′) =

1
λ δ

exp

[
−

4

∑
k=1

β
δ
k (xk− x′k)

2

]
(247)

defines the 8×8 matrix Σδ of covariances between all pairs of the field measurement inputs {x j} j=1...8. Finally,

Σε =
1

λ ε
I (248)

is the 8×8 diagonal matrix representing the measurement uncertainty in the observations, considered as independent.

Notice that only the observations inform the random error or discrepancy components directly.

The 16 hyperparameters in this model, µ , λ ε , λ δ , λ η , β
η

k (k = 1, . . . ,8), β δ
k (k = 1, . . . ,4), are estimated by jointly

sampling these along with samples of the calibration parameters θ from the posterior distribution

π(θ ,µ,λ ε ,β η ,λ η ,β δ ,λ δ |Ye,Ys) using a Metropolis algorithm. The likelihood model for this posterior distribution

L(z|θ ,µ,λ ε ,β η ,λ η ,β δ ,λ δ ) ∝ |Σ1/2|exp
(
−1

2
(z−µ)Σ−1(z−µ)

)
(249)

where z is the 328-dimensional vector representing any possible set of 8 field measurement values and 320 computer

simulation values. The approach is described more fully by Higdon et al. [Higdon et al., 2004].
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Figure 145: The 256 point part of the input design over 8 scaled parameters (θ and x).

6.5.3.1 Input design

The input design consists of two parts. A 256-point orthogonal array LHD [Tang, 1993] with a space-filling criterion

over 8 input parameters (4 xs and 4 θs) added to spread out the points. To this LHD design another 64 points were

added. These were constructed by doing a space-filling design (not a LHD) over only the 4 θ ’s, and each group of 8

points from this design was augmented with the x values from the field measurements 52661, 52663, 52665, 52665*,

52667, 52667*, 52668 and 52668*. Thus, in our set of simulator runs we will have 8 of the field measurement x values

nominally matched, with 8 different θ values for each of these x values. The 9th field measurement of interest, 52669,

was not given this treatment. These designs are shown in Figs. 145 and 146 in the scaled data (in the range [0,1]).

6.5.3.2 Sensitivity and calibration

Inference for the Gaussian process model is done by sampling from the posterior distribution π(θ |Ye,Ys); this provides

a distribution for the calibration parameters θ . The posterior distributions of the model parameters are not available

in closed form. Instead they are explored numerically using Markov Chain Monte Carlo (MCMC) (e.g., [Besag et al.,

1995]). For this model, examination of the trace plots indicated that convergence occurred within about 500 MCMC

steps. Indeed, we ran the MCMC for 3000 steps and conservatively discarded the first 1000 points, keeping the last

2000 as a sample from the posterior distribution. Figure 147 shows the marginal posterior distributions of each of the

calibration parameters. For each, the prior distribution was uniform (i.e., flat) between the minimum and maximum
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Figure 146: The 64 point part of the input design over 4 scaled parameters (θ ).

values. Considering θ1, physically we expect the fully ionized Be to behave as a perfect gas with only 3 translational

degrees of freedom, and hence to have γBe = 5/3 = 1.67; the posterior distribution is consistent with this expectation.

For the opacity scale factors the physically anticipated value is 1, as these are multiplicative scale factors multiplying

the nominal opacity values, used to explore sensitivity. The posterior distribution for θ3 shows some preference for

the value of 1, while that for θ4 is very similar to the flat prior distribution. We conclude that there is no information

in the measurements to calibrate θ4. The Xe gamma, θ2, shows a preference for the high end of the range investigated.

It was expected that it might be lower because the Xe is partially ionized, opening many degrees of freedom among

the various ionization states; however, over the range investigated the Xe gamma does not have a strong impact

on the shock location (compared to experimental uncertainty), and so the experimental data does not provide much

information to calibrate the Xe gamma.

Using the model in Eq. 242 we can evaluate the variation of the shock location as a function of any of the individual

inputs. Specifically, we look at the expected response as a function of any one of the simulator inputs [Oakley and

O’Hagan, 2004]. This gives us a picture of the univariate sensitivity of the output to the input. Figure 148 shows the

variation in shock location (in meters) as the inputs vary over their input ranges (see Table 17 and 18). Considering

first the θ values, we see that only θ1 (specific heat ratio γBe) and θ3 (the opacity scale factor for Be) show much

influence on the primary shock location. The experimental uncertainties range from 1% to 4%, and shock location

changes by about 4% as θ2 varies over the input range; the shock location varies by more, about 15%, as θ1 varies.

The sensitivity to the experimental inputs x is greater. These show the expected decrease in shock location as the

Be disk thickness (x1) or Xe fill gas pressure (x3) increases. In contrast, as the laser energy increases (x2) the shock

location also increases, as a higher ablation pressure will be created. These give us a visual picture of the uncertainty in

shock location that will result from our uncertainty in these input values. The plot of shock location versus observation

time (x4) shows the linear behavior expected of a shock with nearly constant speed over the range of observation times
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Figure 147: The marginal posterior distributions of calibration (θ ) values, based on uniform priors. The calibration

shows a preference for the high values of θ1 and θ2; this is consistent with expectations for θ1, while for θ2 we had

expected midrange values to be more probable. The posterior distribution for θ3 shows some preference for the values

around 1, as expected, while the posterior for θ4 is very similar to the flat prior distribution, reflecting the lack of

sensitivity to calibrate this value.
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Figure 148: Variation in shock location (in meters) as the inputs vary over their input ranges (scaled to [0,1]); each

plot shows the variation as a function of one input and averaged over all other inputs. For the calibration parameters

θ1 (specific heat ratio γBe) and θ3 (the opacity scale factor for Be) show the most significant impact on shock location.

The controlled experimental inputs produce the expected decrease in shock location as the Be disk thickness (x1) or

Xe fill gas pressure (x3) increases, while as the laser energy increases (x2) the shock location increases because of the

higher ablation pressure created. Shock location versus observation time (x4) shows the expected linear behavior.
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Figure 149: The distribution of correlations ρ
η

k . The box plots show the median (central red line), and 1st and 3rd

quartiles (edges of box). The whiskers on each box show the location of the most extreme data in each direction that

is within 1.5 times the interquartile range beyond the edge of the box. Outliers are then shown by red crosses. These

show very little sensitivity to θ4 and θ2, although some outliers on ρ
η

6 are more significant and lead to the non-uniform

posterior shown in Fig. 147. Input x3, the Xe fill pressure, is the next next in order of sensitivity.

explored in the model (12.5 to 14.5 ns.)

Sensitivity can be measured in a variety of ways. We are first primarily interested in the impact of each input factor

on the response as Fig. 148 aims to visually demonstrate. One can also measure sensitivity by the degree of correlation

along each input dimension: the faster the correlation dies off, the more variable the response in that dimension. The

correlation in the direction of each input is governed by β
η

k . Let ρ
η

k , denote the correlation in the direction of the kth

input at one-half the distance input range; since we have scaled the input to [0,1] this distance is 1/2 and

ρ
η

k = exp(−β
η

k (1/2)2) k = 1, . . . ,8 (250)

with βk drawn from its posterior distribution (hence yielding a distribution of ρk values). A small value of βk results in

a value of ρk ≈ 1, and indicates that there is strong “spatial” correlation along this input. In contrast, a large value of

βk results in ρk ≈ 0, and indicates relatively short range correlations. Note that small correlation is evidence of a large

sensitivity. Figure 149 gives a box-plot of the posterior distribution of the ρk’s. A quick glance at the plot indicates

that inputs x1,x2 and x4, as well as θ1 and θ3, are most important. This is consistent with the conclusions reached

when viewing the main effects plots in Fig. 148.

The main effects plots of Fig. 148 are averaged over all input variables except one. So, for example, the effect

of θ2 looks very small. The average correlation corresponding to this input, ρ
η

6 , is close to 1, again indicating that

is it an unimportant parameter. However, there are a considerable number of outlier values of ρ
η

6 at values below
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Figure 150: Predictions (on the vertical axis) vs. field measurements (on the horizontal axis) of shock location. Each

prediction uses 8 of the field measurements to calibrate the model and predicts the 9th (labeled by shot number). A

90% prediction interval is shown. The data cluster into those from the 13 ns observation time and those from 14 ns.

On two of the measurements (52668 and 52669) the experimental uncertainty is shown as a dashed line (others are not

shown to keep the plot simple, but are of similar magnitude, and are given in Table 2).

1; this suggest the presence of some input values for which θ2 is more important, and it is for this reason that the

posterior distribution of θ2 is no longer uniform, even though at first sight the field measurements would seem to lack

the information to calibrate θ2.

6.5.3.3 Predictions

Figure 150 shows the results of a series of leave-one-out predictions. Each prediction uses 8 of the field measurements

to predict a 9th (whose shot number labels the prediction). Each prediction is made multiple times and a 90% prediction

interval is computed.

The vertical axis shows the predicted mean and 90% prediction interval, while the horizontal axis shows the field

measurement. Exact agreement between the predicted mean and the field measurement would be indicated by the
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mean falling on the diagonal; of course, this does not happen. However, with only two exceptions (52669 and 52668),

the field measurement falls within the 90% confidence band of the predictions. On these two predictions the figure

also shows the measurement uncertainty band on the experimental value. Taking this into account the measurement

can easily be within the 90% prediction interval on the prediction.

Because the predictive model included a discrepancy δ (x), it is important to explore that discrepancy and see what

it implies. It could be that the simulation is doing a terrible job, and the prediction is totally based on the correction

provided by the discrepancy. To explore this, the discrepancy δ (x) was sampled over the x input space. The values

ranged from −5× 10−5 m to 7× 10−5 m. This is quite small compared to the shock location of 2× 10−3 m, and

the same as the measurement uncertainty. This indicates that the discrepancy is not dominating the predictions, and

indeed, is not needed in this model. The CRASH code is correctly predicting shock location to within experimental

error. In fact, refitting the model without the discrepancy resulted in predictions that were again within experimental

uncertainty. This does not mean that the CRASH code has full physics (we know it does not), but that when tuned

and initialized at 1.3 ns as we described above, and when the θ values are calibrated to the experiments, there is

no systematic discrepancy in predicted shock locations over the input range explored. Any difference between the

predictions and the field measurements can be explained as zero mean noise of a magnitude similar to the experimental

uncertainty.

One of the field measurements, 52661* (see Table 1), provides data with an observation time of 16 ns. This is

outside the set of input values that was studied to calibrate the model, so using the model to predict the shock location

at 16 ns is an exercise in extrapolation. Performing this extrapolation yields a predicted mean shock location of

2383 µm, to be compared to the measured value 2485±70 µm. The difference between the prediction and nominal

measurement is 101 µm. Given this difference we must then question if there is sufficient evidence to suggest that this

difference is significant. The 90% prediction intervals are roughly 100 µm in total width and very nearly symmetric,

so the difference of just over 100 µm puts the nominal measurement outside of the 90% prediction interval. But on

the experimental side the measurement uncertainty in shock location is ±70 µm, and in addition there is uncertainty

in shock location due to uncertainty in the observation time of approximately ±0.5ns which in turn corresponds

to an additional ±80µm uncertainty in the shock location at 16ns. The 100µm difference between prediction and

measurement can certainly be understood as uncertainty in the measurement (which can be as much as ±150µm),

even without accounting for the predictive uncertainty.

6.5.4 Conclusions of the 1D predictive study

We have constructed a predictive model that can compute the distribution of shock locations in a radiative shock

experiment. The uncertainty in shock location in the model is due to uncertainty in the phenomenological parameters

θ and uncertainty in the hyper-parameters of the Gaussian process model. Additional uncertainty in the shock location

due to uncertainty in the inputs x has not yet been accounted for, but the main effects plots in Fig. 148 can give us some

insight into the influence of these parameters. The range of x studied (and represented in Fig 148) is approximately

twice that observed as experimental input uncertainty, so looking at half the output variation due to the various x’s

suggests an uncertainty of about 200 µm due to the uncertainty in x. Any set of eight of the field measurements

provide sufficient information to calibrate the parameters θ ; the most important of these is the Be-gamma, which is

well calibrated. Next most important is the Be opacity scale factor, and the posterior distribution of this parameter
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Figure 151: Posterior distribution of shock position.

shows the expected peaking around 1, but there is not enough information in the field measurements to calibrate this

parameter very well. These results are not unexpected, given that we are using ideal gas law equations of state and a

1D simulation to model the 3D field experiments.

Overall the predictions for shock location are quite accurate; when the field measurement uncertainty is accounted

for the measurements are within the 90% prediction interval of the predictions. The discrepancy is small, and predict-

ing without discrepancy is just as good as predicting with discrepancy for shock location. The noise, ε , in the model

fully captures the experimental scatter. The shock location is most strongly dependent on observation time, and, within

experimental uncertainty, not on the other input variables.

In summary, we have used 320 runs of CRASH 1D and 9 field experiments for our analysis. We focus on one

output variable: shock location. To evaluate predictive ability we hold one experiment out, use only the 8 remaining

field experiments to construct the model, and predict the ninth. This is repeated for each experiment. As an example

of the model output, Figure 151 shows the posterior distribution of the location of a single shock

6.6 Sensitivity analysis from early 3D simulations

One-dimensional studies can provide useful information about the sensitivities of output quantities of interest to vari-

ations in the input parameters. However, a number of important output features, such as the wall shock, cannot appear

in one-dimensional geometry. As a result, we performed a preliminary three-dimensional sensitivity study of the base-

line CRASH experiment. Each simulation was performed on a uniform Cartesian 1200 x 240 x 240 mesh using the

CRASH code. A second set of runs was performed on a 600 x 120 x 120 mesh to test grid convergence. For this

preliminary analysis, we used simplified physics, treating each material as a gamma-law gas and computed radiation

transport with gray flux-limited diffusion. All simulations were initialized from a two-dimensional HYADES output

file at 1.3 ns using nominal values of the input parameters. Each simulation required approximately 5 hours on 1024

cores of hera at LLNL. The entire set of simulations was completed in about 2 weeks.

The study consisted of 64 simulations at each grid resolution varying four input parameters: the equation of state

gamma for Be was varied between 1.4 and 1.66667; the gamma for Xe was varied between 1.1 and 1.4; and the opacity

scale factors for both Be and Xe were varied independently between 0.7 and 1.3. The parameter combinations were
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Figure 152: Mass density at 13 ns showing the three output quantities of interest from runs using an early version of

the CRASH code, initialized using output from a Lagrangian code that evaluated the behavior for the first 1.1 ns.

determined using a Latin hypercube design. All other parameters were fixed at their nominal values. We examined

three output quantities of interest the location of the main shock, the angle between the wall shock and the plastic

tube, and the distance of the triple point from the wall. A typical result showing these output quantities is plotted

in Figure 152. All three of these quantities showed surprisingly good agreement with the experiments, even though

the overall morphology of the flow in the experiments shows significant differences from the simulations. Figure 153

gives an indication of the wide variety of flow morphologies that are possible with different combinations of the input

parameters.

The results indicate that the location of the main shock, defined here as the forward most location of a significant

density jump in the xenon, is quite insensitive to the variations in these input parameters. The variation in location was

much smaller than the range of values observed in the experiment. However, the shock location may still be sensitive

to variations in these input parameters during the first 1.3 ns, before the initialization of the three-dimensional CRASH

simulations. We also observed that the location of the main shock is not converged at these grid resolutions, although

the error is still less than the experimental range. The angle of the wall shock shows a strong linear correlation with

Xe opacity, but no correlation with the other three input variables. This makes physical sense, since the Xe opacity

determines how far the radiation can penetrate ahead of the shock. For lower opacities, the wall shock begins further

down the tube so that the angle is reduced. The triple point location shows a weak correlation with the Xe gamma, but

no noticeable correlations with the other three input variables.

We also constructed plots showing relative importance of the input parameter variations using both MARS and

MART. The two methods produced nearly identical results. The most important source of variation in the shock

location is the Xe opacity scale factor, although as stated above, the variation in position is very small (at least after 1.3

ns). As expected, the variation in wall shock angle is determined entirely by the Xe opacity scale factor. On the other

hand, the Xe gamma is almost entirely responsible for the variation in the triple point location. However, as mentioned

above, input parameters that did not prove to be important in this study may still be important during the first 1.3 ns.
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Figure 153: Pressure at 13 ns for various combinations of the input parameters, showing the wide variety of flow

morphologies that are possible.

6.7 Verification of uncertainty quantification software

Verification and validation of simulation codes has been a major topic of research for many years. However, little

attention has been devoted to verification of software used for uncertainty quantification analysis. As a first step in this

process, we have performed a UQ analysis using a simplified problem with an analytic solution to determine if our UQ

software is producing sensible results. The analytic solution in this case can be used as a substitute for experimental

data and compared to the simulation results. As part of the verification process, we compared the results from four

different UQ methodologies Gaussian process, MARS, Bayesian MARS, and MART. We also tested the ability of the

UQ software to distinguish between active and inert input parameters. Finally, we performed a blind calibration of an

input parameter whose correct value was known.

The problem we studied was a simple shock tube, which exercised only the hydrodynamics solver in the code. The

initial conditions consisted of gas at high density and pressure separated from a second gas with a lower density and

pressure by a membrane. Both gases were initially at rest. The size of the jumps in density and pressure across the

membrane were chosen to match those encountered in the CRASH experiments. Three input parameters were varied

the pressure and density in the high-density gas and the value of gamma in the equation of state. The pressure and

density in the low-density gas were held fixed. Five inert input parameters that had no effect on the solution were

also varied. The study consisted of 62 parameter combinations using a Latin hypercube design. The same parameter

combinations were used for both the simulations and the analytic solutions. Eight output quantities were examined.

These included the locations of the shock front xshk, the contact discontinuity xcd, the head of the rarefaction xhead,

and the tail of the rarefaction, xtail. The other four quantities were the values of density rhshk, pressure Pshk, and
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Figure 154: Sensitivity study using Bayesian MARS showing the probability of importance of each primary effect as

well as the most important interactions for the four feature locations in the shock tube solution.

Figure 155: Relative importance plots obtained using MART. The first three columns are density, pressure, and gamma.

The remaining five columns are inert parameters. Each plot shows results for one of the characteristic output variables.

velocity ushk behind the shock front and the value of density rhocd between the contact discontinuity and rarefaction.

These four quantities are constant both in space and in time.

The simulations and analytic solutions were virtually identical, except for a small bias in detecting the locations

of discontinuities on the finite difference grid. The sensitivity analysis performed using all four methods produced

consistent, but not identical, results. Since the four methods use different measures of relative importance of the input

parameters, perfect agreement was not expected. In addition, all four methods successfully distinguished between the

active and inert variables.

Figures 154 and 155 contain the results obtained using Bayesian Mars. The first three lines show the probability

that each of the three active input parameters is important in producing variations in each of the eight output parameters.

The remaining lines show the probability that various two-way and three-way interactions are important. Variables r1

through r5 are the inert input parameters. As expected, none of these parameters are important either by themselves or

in interactions with other variables.
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Figure 156 shows relative importance plots of the eight input variables for each of the output parameters. The first

three columns represent the input density, pressure, and gamma followed by the five inert parameters. As expected,

none of the five inert variables produced a significant signal in the analysis. The feature locations, shown in the top

row of plots, are most sensitive to the initial density and pressure. However, the value of gamma is very important in

determining the variability in the two density values.

The final test was to calibrate the value of gamma. A set of ten analytic solutions was computed varying only the

density and pressure with gamma fixed at 1.4. The number of analytic solutions was reduced for this study to represent

the normal case where there are many fewer experiments than simulations. These results were compared with the full

set of numerical simulations in which all three input parameters were varied. The posterior distribution for gamma,

shown in Figure 12, had a mean of 1.41, in excellent agreement with the expected value. As the number of analytic

solutions is increased, the mean of the posterior distribution of gamma converges to the correct value and the standard

deviation decreases.

In summary, all four of our UQ methods work well for this problem and provide believable results that are consis-

tent with each other and with the physics of the problem. They reliably differentiated between active and inert input

parameters and produced reasonable posterior distributions for calibrating the value of gamma. From this study, it

appears that all four of our UQ methods should provide reliable results when applied to simulations and experiments

of the complete CRASH problem.

6.8 2D Predictive Study for Shock Location at 20 and 26 ns

In the course of the thesis research of Forrest Doss, we acquired some data at later times. Later, we realized that

constraints imposed by target fabrication would mean that the year-5 experiment would also need to be at later times.

This provided an opportunity for a predictive study that would extrapolate in time. This study was based on run set

RS4, which used CRASH 1.1.

The CRASH experiment creates a high energy density radiative shock in a Xe-filled tube, with a shock velocity on

the order of 100 km/s. The shock is first created in a Be metal disk 20 microns thick by a 1 ns laser pulse of 360 J. The

shock breaks out of this disk some 400 ps after the initiation of the laser pulse, and continues down the Xe-filled tube,

compressing and heating the Xe sufficiently to radiate, and this radiation in turn preheats the Xe ahead of the shock

and ablates the plastic wall of the tube, creating additional radial shocks traveling inwards from the wall. To predict

the location of the primary shock we use two radiative hydrodynamics codes, Hyades and CRASH. Hyades models

the laser-plasma interaction and can predict the shock breakout time and the state of the system at 1.1 ns after the

initiation of the laser pulse. The CRASH code, when initialized with this state at 1.1 ns, can predict the shock location

at later times when shock location can also be observed in experiments at observation times from 13 to 26 ns.

Our general interest is in using the simulation tools together with experiments conducted in one region of input

space, to make predictions in a new region of input space in which no prior experiments have been made. We are

generally interested in extrapolation from one region of input space to another, with this extrapolation accomplished by

a simulation code that contains the necessary physics. In particular, we have two data sets on which to base predictions:

shock break time data, and shock location data at 13, 14 and 16 ns, and wish to predict shock locations at 20 and 26

ns (which are then compared to subsequent field measurements). We use two models of the Kennedy-OHagen form to

combine field measurements with simulations, using one to inform the other, and we interpret the discrepancy in these
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Figure 157: Posterior distribution for electron flux limiter parameter calibrated using shock breakout times. This is the

marginal distribution, but the analysis produces samples from the full joint distribution of calibration parameters.

models in a way that allows us to gain some understanding of model error separately from parameter tuning.

To model shock breakout times we construct a model of the form t = ηBO(x,θ)+ δBO + εBO that jointly fits the

field measurements, T , of shock breakout time t along with a set of 1024 Hyades simulations over a 6 dimensional input

space with 4 experimental variables x and 2 calibration parameters θ . This model provides posterior distributions for

various modeling parameters, including a posterior π(θ |T ) for the calibration parameters, as well as for the parameters

in Gaussian process models of the emulator ηBO(x,θ), the discrepancy function δBO and the replication error εBO. A

sample of such a posterior for the electron flux limiter parameter (marginalized over the other calibration parameter)

appears in Figure 157.

If the discrepancy function is significant compared to measurement uncertainty we would call this process tuning,

but if, as is in our case, the discrepancy is small, then we refer to this as calibration (for shock breakout time).

Figure 158 shows a leave-one-out predictions of shock location and of shock breakout time, showing the discrepancy

compared to the measurement uncertainty. The discrepancy for shock location is significant, while for breakout time

it is insignificant. We therefore can calibrate using the breakout data, and will then use shock location time data from

13 to 16 ns to estimate discrepancy for better understanding of predictions at 20 and 26 ns.

Once we have posterior distributions for calibration parameters we then use the shock location field data (at times

of 16 ns and less) along with 1024 simulations of shock locations from CRASH (v 1.1) to construct a model of the

form , but in this model is no longer treated as a calibration parameter, but instead is treated as an experimental

parameter and is drawn from the posterior constructed in the previous step . The are also drawn from distributions

that represent the understood uncertainties in the experimental parameters. This second model is used to construct the

emulator and its discrepancy , as well as a best estimate of the replication error , all for shock location. The discrepancy

from this model can be studied to understand the defects of the physics model; note that because we have separated

calibration from the construction of this discrepancy, the calibration of the is not simply masking errors in predicted
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Figure 158: The full set of simulation results (green), a single measurement to predict (open circle), calibrated code

predictions (blue), discrepancy (pink) compared to measurement error (black), and finally the prediction of the mea-

surement. All ranges shown are 95% prediction intervals.

shock location. The result shows that our model tends to under predict shock location.

Finally we can use to predict shock location at 20 and 26 ns, a region of phase space in which we had simulations

but no previous measurements. This produced the results shown in Figure 159. In doing this analysis we can separate

the code prediction and the uncertainty due to this prediction (caused by uncertainty in x, , and in the Gaussian process

modeling parameters) from the uncertainty due to discrepancy . The uncertainty in discrepancy is of course large,

because we are extrapolating the discrepancy to a new region of input space. The uncertainty in the emulator is

significantly smaller because there were simulation data in this region.

Comparison of the predictions with field measurements at 20 and 26 ns show that even the smaller predictive

interval from the emulator alone contains the actual field measurements. The results, shown here as 95% predictive

intervals show a median shock location of 2750 microns at 20 ns, and 3200 microns at 26 ns. These compare well

with experimental measurements of microns and microns, respectively.

6.9 Combining Different Models

We have developed an approach to combine and simultaneously calibrate multiple models. This is important in support

of our plan to base our predictions of the Year-5 experiment on combinations of models of varying fidelity, such as 3D

Gray and 2D MG. We began by working with results from 1D and 2D run sets, as a way to develop and demonstrate

the methodology. The structure of the combined model for this purpose is

y f ,k = η(xk,θ1,θ f )+δ1(xk,θ2,θ f )+δ2(xk)+ ε j = 1 . . .N f (251)

ys2, j = η(x j,θ1, p f , j)+δ1(x j, p2, j, p f , j) j = 1 . . .N2 (252)

ys1,i = η(xi, p1,i, p f ,i) i = 1 . . .N1 (253)

where ys1,i is a set of N1 data values of a QOI from a set of 1D CRASH runs (RS3) using experimental parameter values

xi, phenomenological/physical parameter values p1,i that are unique to the 1D code, and phenomenological parameter

values p f ,i that are available for tuning in both 1D and 2D CRASH. In this η is seen to be a code emulator that is
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Figure 159: Results of the Kennedy-OHagan type analysis with calibration, predicting new observations at 20 ns and

26 ns in advance of knowing the data. The red predictive interval is that due to propagating uncertainties in θ and x

through the simulator, and the uncertainties in the emulator ηSL(x,θ). In contrast, the blue predictive interval includes

the uncertainty due to the discrepancy, which is large because it has been extrapolated from the 13 16 ns range out to

20 and 26 ns.
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Predictive intervals for shock locations (4 examples)!

!  This demonstrates the ability to combine models!

!  We will be combining 2D, 3D, Gray and Multigroup models to predict the 
year 5 experiment!
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Figure 160: Prediction of shock location based on combined 1D and 2D CRASH simulations.

informed largely (but not entirely) by the 1D code. Similarly ys2, j are a set of N2 values from runs of 2D CRASH

(RS4), using experimental parameter values x j, phenomenological parameters values that are unique to the 2D code

p2, j, and values of parameters that should be shared across the two codes of p f , j. The value θ1 represents the calibrated

values of the parameters that are unique to the 1D code, and δ1 is a discrepancy function that captures the difference

between the 1D and 2D codes. While θ1 is a parameter value, it is uncertain (being determined by a Bayesian inverse

process) and so in fact is sampled from a (joint) posterior of various parameters. Finally, y f ,k are N f values of the QOI

from field measurements. These are predicted by the emulator and discrepancy η +δ with calibrated parameter values

θ f , θ2 and θ1, along with a discrepancy δ2 that is informed largely by the systematic difference between the model

and realty, as well as a noise term ε that captures replication error in the experimental values (due to uncontrolled and

even unknown experimental conditions).

Note that in this model structure a non-zero discrepancy δ1 is almost guaranteed, because the 1D and 2D code

cannot give the same results (unless the problem really is 1D).

Figure 160 shows a prediction from this combined 1D and 2D model, for shock location. The green crosses show

the simulation values, while the circle is a field measurement of shock location (from the 2008 experimental campaign).

This specific measurement was left out of the statistical analysis; the other measurements from that campaign were

included. The pink bar shows the 95% prediction interval from the calibrated 1D model (η(x,θ1,θ f )), while the

blue bar is the 95% prediction interval from calibrated the 2D model. Finally, the red band is the full prediction

η +δ1 +δ + ε .

The joint posterior distribution is also informative. The goal of this analysis combine experimental data on shock

breakout time from 2009 experiments and on shock location at 13 ns from 2008 experiments with model results of
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Figure 161: Joint posterior distributions of electron flux limiter and Be gamma. The calibration is based on (left) shock

breakout time data only; (center) shock location data only; and (right) both breakout time and shock location.

those quantities, as well as model results at 26 ns, to do predictions of shock location at 26 ns of a future experiment.

Figure 161 shows the joint posterior distribution for the electron flux limiter and Be gamma, based on which data are

used for calibration. Note that the breakout time provides the most compelling evidence for these parameters (which

is expected), but that the joint calibration still refines and tightens the posterior distribution for calibration.

This ability to combine multiple simulation models can be directly applied to combine gray and multi group

simulations, so we can, for example, use many gray 2D simulations together with fewer multi-group 2D simulations.

We are also extending this model to allow the combination of multiple models where none of the models can be

considered the high fidelity model, in other words where there is no hierarchy or ranking of models. This is necessary

so that we can, for example, combine 3D gray with 2D multi group models.

6.10 Prediction of fifth year shock location

6.10.1 Introduction

An emerging problem in many areas of scientific study is making, or improving, inferences on physical systems using

deterministic computer simulators (Sacks et al., 1989; Santner et al., 2003). An important application of computer

models is that of statistical model calibration (or simply calibration) where the aim is to combine simulator outputs

with physical observations to build a predictive model and also estimate unknown parameters of interest given the real

process (e.g., Kennedy and O’Hagan, 2001).

The central application of interest for the Center for Radiative Shock Hydrodynamics (CRASH) is radiative shocks.

These are shock waves where radiation from shocked matter dominates the energy transport and results in a complex

evolutionary structure. Radiative shocks involve many subprocesses, making them computationally challenging to
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Figure 162: Scatterplot matrix of inputs for observations, simulations and extrapolations. Grey dots are the RS12

simulations, black dots are the RS13 simulations, red circles are the 2008 and 2010 experiments and the light blue

circles are the locations of the fifth year experiments.

simulate. In addition, some inputs that govern the behaviour of the shocks are unknown - or at least imprecisely

known. A main goal of CRASH is to use a limited number of complex computer simulations and physical observations

to predict features of radiative shock experiments in an untested regime. That is, the aim is to calibrate the CRASH

code and use the calibrated model to make predictions of features of radiative shocks that require extrapolation in

several of the inputs.

6.10.2 Data

The statistical model calibration task utilizes simulations of radiative shock and experiments conducted at the Omega

laser facility in 2008 and 2010. This section describes the inputs to the observations and CRASH simulations and the

inputs.

The experiments that are used for calibration and prediction are those from the 2008 and 2010 experiments. All
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of the 2008 experiments, and all but three of the 2010 experiments, were performed on circular shock tubes with a

small diameter (in the area of 575 microns). Three of the 2010 experiments used circular tubes with a diameter of

1150 microns. The 2012, fifth year, experiments to be predicted have oval shaped tubes and nozzle at the front end

of the tube. We had two observations with a nozzle on circular tubes, but none with an oval tube. Thus, there are no

observations in the regime (oval tube) where the predictions are to be made. The defining feature that captures the

shape of the tube is the aspect ratio.

The code runs arise from two separate simulation suites - run-sets 12 and 13 (RS12 and RS13), respectively. The

inputs for each code and the ranges explored are shown in Table 1. Notice that several of the inputs are held constant

in RS12 and RS13, respectively. Briefly, RS12 explores the input region for small, circular tubes used in the 2008

experiments. RS13, on the other hand, explores a similar input region, but also varies the tube geometry and nozzle

geometry. The simulation region for RS13 contains the 2010 experiments with large diameter, circular tubes and also

the fifth year oval tube experiments to be predicted. The energy flux limiter was held constant in RS13 because the

QOIs were found to be relatively insensitive to this input in earlier studies, thus the only calibration parameter to be

estimated is the energy scale factor. In addition, the thickness of the beryllium disk is also held constant in RS13

because improvements in manufacturing meant that the disk thickness had very little variability in the experiments.

Design variables

Input RS12 RS13

Be thickness (microns) [18,22] 21

Laser energy (J) [3600,3990]

Effective laser energy (J)∗ [2156.4,4060]

Xe fill pressure (atm) [1.100,1.2032] [0.852,1.46]

Tube diameter (microns) 575 [575,1150]

Taper length (microns) 500 [460,540]

Nozzle length (microns) 500 [400,600]

Aspect ratio (microns) 1 [1,2]

Calibration parameters

Input RS12 RS13

Electron flux limiter [0.04, 0.10] 0.06

Energy scale factor [0.40,1.10] [0.60,1.00]

Table 19: Input ranges for RS12 and RS13. A single value means that the variable was constant for all simulation

runs. ∗ The effective laser energy is the laser energy × energy scale factor.

The inputs for a sample of 428 simulations from RS12 and RS13, the 2008 and 2010 experiments and the fifth

year experiments are shown in Figure 162. There are a few observations that one should take away from this plot. The

different input regions RS12 and RS13 are clearly shown. In addition, it is quite noticeable that the 2008 and 2010
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experiments (red circles) fall within the input region covered by the simulations. However, the fifth year experiment

(light blue circles) are clearly an extrapolation in the aspect ratio. That is, the aspect ratio of the experiments is equal

to 1, but the fifth year experiments have an aspect ratio of two.

6.10.3 Prediction Strategy

A Bayesian hierarchical model is used to combine observations and simulations to make predictions with associated

uncertainty. The basis for this approach is found in Kennedy and O’Hagan (2001) and Higdon et al. [2004]. The

components of the prediction strategy are outlined in the previous quarterly report.

The approach that we use writes the observations as the sum of the simulator output, a discrepancy term and

observation error. That is,

y(x) = η(x,θθθ)+δ (x)+ ε, (254)

where y(x) denotes the quantity of interest (QOI) at design variable setting x, η(x,θθθ) is the simulator output at input

settings (x,θθθ), δ (x) is the discrepancy that accounts for systematic differences between the code output and the system

mean, and ε is observation error. Note that a CRASH code run takes in inputs t for the calibration parameter. However,

the value of the calibration parameter in the field, θθθ , is unknown and is estimated as part of fitting the Bayesian

hierarchical model. Furthermore, η , δ , θθθ and the observation error are estimated and the resulting uncertainties

included in the predictions.

The nominal settings for the radiative shock experiments to be predicted are listed in Table 20. From past exper-

iments, we have found that the nominal values of the design variables are not always achieved in practice. Conse-

quently, Table 20 also includes the distribution of several of the inputs. We will propagate these distributions through

the predictive model to account for the uncertainty in the inputs.

The strategy used to make predictions attempts to account for all known sources of uncertainty. These include

variability in the nominal settings of the system, variability in unknown parameters, uncertainty in predicting the code

output at unsampled inputs, the systematic discrepancy between the model response and the physical system, and also

observation error. To do so, there are four main components to the approach used to obtain a sample from the posterior

predictive distribution of the QOIs: (i) sample the input settings, x, from the distributions specified in Table 20 and

also the parameters for the statistical model; (ii) use the sampled parameters to estimate the simulator output, η(x,θθθ);
(iii) use the sampled parameters to estimate the discrepancy, δ (x); and adjust the prediction; and (iii) sample a value

for the observation error add it to the prediction in step (iii). These steps are repeated many times to obtain a sample

from the posterior predictive distribution of y(x) at the nominal settings.

6.10.3.1 Prediction of shock location in the training experiments

Before moving on to the predictions of the fifth year experiments, we detour slightly to try to gain some insight from

the calibration model. A main component of the statistical model is estimating the code output at un-sampled inputs.

That is, an emulator of η is found. While it is not possible to visualize the emulator as a function of all of the inputs

simultaneously, we can integrate out all but one of the inputs and plot the averaged response over the remaining input

as a form of sensitivity analysis.

Figure 163 shows the sensitivity plots for each of the inputs. Interestingly, the output appears to be fairly insensitive

to several of the inputs representing the tube geometry (i.e., nozzle length, taper length and, to a lesser degree, aspect
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Design variables

Input Nominal value Distribution

Be thickness (microns) 21 Uniform (20.5, 21.5)

Laser energy (J) 3800 Normal (3800, 81.64)

Xe fill pressure (atm) 1.15 Normal(1.15, 0.10)

Tube diameter (microns) 1150

Taper length (microns) 500

Nozzle length (microns) 500

Aspect ratio (microns) 2

Time (ns) 26

Table 20: Settings and distributions for the design variables in the 2012 experiments. The Be thickness is uniform

over the specified range and the Laser energy and Xe fill pressure are both normal with the specific mean and standard

deviation.

ratio). The final geometric input, tube diameter, seems to be quite active. A quick glance at Figure 1 (seventh row)

shows that there are observations from previous experiments with a large tube diameter. Thus when making the

predictions for the fifth year experiment, we will not be extrapolating in this input. The model output appears quite

sensitive to the remaining outputs where no extrapolation is required.

The statistical model will be used in the next section to make predictions of the fifth year experiment. We use

different formulations for the discrepancy model in our predictions:

(i) Predictions are made using the Kennedy and O’Hagan (2001) model using simulations (RS12 and RS13) and

observations (2008 and 2010 experiments).

(ii) Predictions are made using simulations (RS12 and RS13) and observations (2008 and 2010 experiments), but the

discrepancy is specified as a random effect with a variance that grows linearly in time.

To evaluate how the statistical model performs, the 2008 and 2010 experiments are predicted. Figure 164 shows

a sample of predicted trajectories at a random set of inputs (grey curves), 95% prediction intervals with and without

discrepancies and observational error (black and green curves respectively) and the observations of shock location

(black dots) from the 2008 and 2010 experiments. Notice that each of the observations lies within the 95% prediction

intervals, lending some confidence to the predictive ability of the model.

6.10.3.2 Prediction of shock location in the fifth year experiments

The predictive models ((i) and (ii)) discussed in the previous subsection were used to predict shock location for the

fifth year experiments. The predictions and associated uncertainty intervals, as well as the observations, are shown in

Figures 4 and 5 for shock location versus time. Both of the figures show a sample of predicted trajectories at a random
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Figure 163: Sensitivity plots for each of the inputs to the computer model. Dashed lines shows 95% prediction

intervals and the solid line is the median prediction.

set of inputs (grey curves), 95% prediction intervals with and without discrepancies and observational error (black and

green curves respectively) and the observations of shock location from the fifth year experiments.

A quick glance at the figures reveals that the two prediction strategies yield qualitatively similar results, though

the uncertainty is slightly larger for latter approach (ii). Furthermore, in both cases, the fifth year shock locations are

slightly under-predicted. That is, the location of the the observed shocks are further down the tube than is predicted by

the statistical model. Put another way, the majority of the shocks locations lie above the prediction intervals specified

by the statistical models. Note, however, that the distribution of predicted locations does overlap with the distribution

of observed location, thus achieving the stated goal for the project.

At this point, the reason for the under-prediction of the shock is not known. Looking at Figure 162, we see that the

variable with the largest degree of extrapolation in the prediction is the aspect ratio. Furthermore, Figure 163 indicated

that the impact of aspect ratio on the system output was limited. From this vantage point, nothing in the experiments

initially indicated that the model was likely to under-predict the shock location. One possibility is that this difference
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Figure 164: Posterior prediction intervals at the nominal settings for shock location versus time viewed along the minor

axis using prediction strategy (ii). Grey curves show a sample of predicted trajectories at different input settings, green

curves are 95% prediction intervals incorporating parameter and input uncertainty, black curves form 95% prediction

intervals incorporating parameter and input uncertainty, discrepancy variation and observational uncertainty and the

circles are the observations from the 2008 and 2010 experiments.

arises from lack of fidelity in the physics in the model, as follows. The diffusion model for radiation transport used

in CRASH is well known to transport too much energy laterally. In the present context this would be expected to

produce more wall blowoff and a greater displacement of the wall shock in the simulation results than in the physical

data. Indeed there are indications of this (see Sec. 6.2.2). The more-extensive wall shock might reduce the amount of

momentum that can be delivered through the nozzle, thus reducing the momentum that carries the shock forward at

late times.

232



14 16 18 20 22 24 26 28

2000

2500

3000

3500

4000

sh
oc

k 
lo

ca
tio

n 
(µ

m
)

time (ns)

Figure 165: Posterior prediction intervals at the nominal settings for shock location versus time viewed along the minor

axis using prediction strategy (i). Grey curves show a sample of predicted trajectories at different input settings, green

curves are 95% prediction intervals incorporating parameter and input uncertainty, black curves form 95% prediction

intervals incorporating parameter and input uncertainty, discrepancy variation and observational uncertainty and the

circles are the observations from the fifth year experiments.
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Figure 166: Posterior prediction intervals at the nominal settings for shock location versus time viewed along the minor

axis using prediction strategy (ii). Grey curves show a sample of predicted trajectories at different input settings, green

curves are 95% prediction intervals incorporating parameter and input uncertainty, black curves form 95% prediction

intervals incorporating parameter and input uncertainty, discrepancy variation and observational uncertainty and the

circles are the observations from the fifth year experiments.
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